Rifaximin (4-deoxy-4′-methylpyrido[1′,2′-1,2]imidazo- [5,4-c]-rifamycin SV) is a synthetic antibiotic designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal (GI) absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a nonsystemic antibiotic with a broad spectrum of antibacterial action covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually nonabsorbed, its bioavailability within the GI tract is rather high with intraluminal and fecal drug concentrations that largely exceed the minimal inhibitory concentration values observed in vitro against a wide range of pathogenic organisms. The GI tract represents, therefore, the primary therapeutic target and GI infections the main indication. The appreciation of the pathogenic role of gut bacteria in several organic and functional GI diseases has increasingly broadened its clinical use, which is now extended to hepatic encephalopathy, small intestine bacterial overgrowth, inflammatory bowel disease and colonic diverticular disease. Potential indications include the irritable bowel syndrome and chronic constipation, Clostridium difficile infection and bowel preparation before colorectal surgery. Because of its antibacterial activity against the microorganism and the lack of strains with primary resistance, some preliminary studies have explored the rifaximin potential for Helicobacter pylori eradication. Oral administration of this drug, by getting rid of enteric bacteria, could also be employed to achieve selective bowel decontamination in acute pancreatitis, liver cirrhosis (thus preventing spontaneous bacterial peritonitis) and nonsteroidal anti-inflammatory drug (NSAID) use (lessening in that way NSAID enteropathy). This antibiotic has, therefore, little value outside the enteric area and this will minimize both antimicrobial resistance and systemic adverse events. Indeed, the drug proved to be safe in all patient populations, including young children. Although rifaximin has stood the test of time, it still attracts the attention of both basic scientists and clinicians. As a matter of fact, with the advancement of the knowledge on microbial-gut interactions in health and disease novel indications and new drug regimens are being explored. Besides widening the clinical use, the research on rifaximin is also focused on the synthesis of new derivatives and on the development of original formulations designed to expand the spectrum of its clinical use.
The dramatic success of pharmacological acid suppression in healing peptic ulcers and managing patients with gastroesophageal reflux disease (GERD) has been reflected in the virtual abolition of elective surgery for ulcer disease, a reduction in nonsteroidal anti-inflammatory drug (NSAID)-associated gastropathy and the decision by most patients with reflux symptoms to continue medical therapy rather than undergo surgical intervention. However, a number of challenges remain in the management of acid-related disorders. These include management of patients with gastroesophageal symptoms who do not respond adequately to proton pump inhibitor (PPI) therapy, treatment of patients with nonvariceal upper gastrointestinal bleeding, prevention of stress-related mucosal bleeding, optimal treatment and prevention of NSAID-related gastrointestinal injury, and optimal combination of antisecretory and antibiotic therapy for the eradication of Helicobacter pylori infection. A number of new drugs are currently being investigated to provide a significant advance on current treatments. Some of them (namely potassium-competitive acid blockers (P-CABs) and CCK2-receptor antagonists) have already reached clinical testing while some others (like the antigastrin vaccine, H3-receptor ligands or gastrin-releasing peptide receptor antagonists) are still in preclinical development and need the proof of concept in human beings. Of the current approaches to reduce acid secretion, P-CABs and CCK2-receptor antagonists hold the greatest promise, with several compounds already in clinical trials. Although the quick onset of action of P-CABs (i.e. a full effect from the first dose) is appealing, the results of phase II studies with one such agent (namely AZD0865) did not show any advantages over esomeprazole. Thanks to their limited efficacy and the development of tolerance it is unlikely that CCK2 antagonists will be used alone as antisecretory compounds but, rather, their combination with PPIs will be attempted with the aim of reducing the long-term consequences of hypergastrinemia. While H2-receptor antagonists (especially soluble or over-the-counter formulations) will become the ‘antacids of the third millennium’ and will be particularly useful for on-demand symptom relief, clinicians will continue to rely on PPIs to control acid secretion in GERD and other acid-related diseases. In this connection, several new PPI formulations have been developed and two novel drugs (namely ilaprazole and tenatoprazole) are being studied in humans. The recently introduced immediate-release (IR) omeprazole formulation (currently available only in the USA) quickly increases intragastric pH and, given at bedtime, seems to achieve a better control of nocturnal acidity. IR formulations of other PPIs (including the investigational ones) will probably be available in the future and will enlarge our therapeutic armamentarium. Amongst the novel PPIs, tenatoprazole appears to be a true advance in the acid suppress...
Rifaximin (4-deoxy-4′-methylpyrido[1′,2′-1,2]imidazo [5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal (GI) absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non-systemic antibiotic with a broad spectrum of antibacterial action covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non-absorbed, its bioavailability within the GI tract is rather high with intraluminal and fecal drug concentrations that largely exceed the minimum inhibitory concentration values observed in vitro against a wide range of pathogenic organisms. The GI tract represents therefore the primary therapeutic target and GI infections the main indication. This antibiotic has therefore little value outside the enteric area and this will minimize both antimicrobial resistance and systemic adverse events. Indeed, the drug proved to be safe in all patient populations, including young children. The appreciation of the pathogenic role of gut bacteria in several organic and functional GI diseases has increasingly broadened its clinical use, which is now extended to hepatic encephalopathy, small intestine bacterial overgrowth, inflammatory bowel disease and colonic diverticular disease.
Due to the limited efficacy and considerable toxicity of conventional chemotherapy, novel cytotoxic agents and innovative noncytotoxic approaches to cancer treatment are being developed. Amongst the various hormonal agents, increasing attention is being directed to somatostatin analogs. This is largely due to the demonstration of antineoplastic activity of these compounds in a variety of experimental models in vitro and in vivo and to the elucidation of some aspects of the molecular mechanisms underlying their antineoplastic activity. On the other hand, clinical experience with somatostatin analogs in the treatment of conditions like acromegaly and GEP tumors has shown that they are well tolerated compared to other antineoplastic therapies currently in use. As a consequence, there is much ongoing clinical research to determine whether or not results from experimental studies will translate into clinically useful antineoplastic activity. Besides being used in cancer treatment and palliation, radiolabelled somatostatin analogs are employed for the localization of primary and metastatic tumors expressing somatostatin receptors. The so-called ‘somatostatin receptor scintigraphy’ is indeed the most important clinical diagnostic investigation for patients with suspected neuroendocrine tumors. Targeted radiotherapy, which is being evaluated in clinical trials, represents an obvious extension of somatostatin scintigraphy. Since the short half-life of native somatostatin makes continuous intravenous infusion mandatory, several long-acting analogs have been synthesized. Amongst the hundreds of peptides synthesized, octreotide (which binds mainly to SSTR-2 and SSTR-5 receptor subtypes) has been the most extensively investigated. A thorough analysis of the pharmacological activities and therapeutic efficacy of the native somatostatin and the synthetic analogs (octreotide, lanreotide and vapreotide) reveals that the biological actions of these peptides are not always identical. These differences appear to be related to the different affinities of the natural hormone and synthetic derivatives for the different receptor subtypes. For all the three peptides long-lasting formulations have been developed to provide patients with the convenience of once or twice a month administration and to ensure stable drug serum concentrations between injections. Radiolabelled derivatives of octreotide, lanreotide and vapreotide have been synthesized and used as radiopharmaceuticals for somatostatin receptor scintigraphy and somatostatin receptor-targeted radiotherapy. The safety profile of synthetic somatostatin analogs is well established. Most adverse reactions to these peptides are merely a consequence of their pharmacological activity and consist mainly of gastrointestinal complaints, cholelithiasis and effects on glucose metabolism. They are often of little clinical relevance, thus making somatostatin analogs safe drugs for long-term use. While immediate release preparations are the drugs of choice in the short term, long-acting formulati...
Although it is unclear to what extent irritable bowel syndrome (IBS) symptoms represent a normal perception of abnormal function or an abnormal perception of normal function, many believe that IBS constitutes the clinical expression of an underlying motility disorder, affecting primarily the mid- and lower gut. Indeed, transit and contractile abnormalities have been demonstrated with sophisticated techniques in a subset of patients with IBS. As a consequence, drugs affecting gastrointestinal (GI) motility have been widely employed with the aim of correcting the major IBS manifestations, ie, pain and altered bowel function. Unfortunately, no single drug has proven to be effective in treating IBS symptom complex. In addition, the use of some medications has often been associated with unpleasant side effects. Therefore, the search for a truly effective and safe drug to control motility disturbances in IBS continues. Several classes of drugs look promising and are under evaluation. Among the motor-inhibiting drugs, gut selective muscarinic antagonists (such as zamifenacin and darifenacin), neurokinin2 antagonists (such as MEN-10627 and MEN-11420), beta3-adrenoreceptor agonists (eg, SR-58611A) and GI-selective calcium channel blockers (eg, pinaverium bromide and octylonium) are able to decrease painful contractile activity in the gut (antispasmodic effect), without significantly affecting other body functions. Novel mechanisms to stimulate GI motility and transit include blockade of cholecystokinin (CCK)A receptors and stimulation of motilin receptors. Loxiglumide (and its dextroisomer, dexloxiglumide) is the only CCKA receptor antagonist that is being evaluated clinically. This drug accelerates gastric emptying and colonic transit, thereby increasing the number of bowel movements in patients with chronic constipation. It is also able to reduce visceral perception. Erythromycin and related 14-member macrolide compounds inhibit the binding of motilin to its receptors on GI smooth muscle and, therefore, act as motilin agonists. This antibiotic accelerates gastric emptying and shortens orocecal transit time. In the large bowel a significant decrease in transit is observed only in the right colon, which suggests a shift in fecal distribution. Several 'motilinomimetics' have been synthesized. Their development depends on the lack of antimicrobial activity and the absence of fading of the prokinetic effect during prolonged administration. 5-hydroxytryptamine (5-HT)4 agonists with significant pharmacological effects on the mid- and distal gut (such as prucalopride and tegaserod) are available for human use. These 'enterokinetic' compounds are useful for treating constipation-predominant IBS patients. 5-HT3 receptor antagonists also possess a number of interesting pharmacological properties that may make them suitable for treatment of IBS. Besides decreasing colonic sensitivity to distension, these drugs prolong intestinal transit and may be particularly useful in diarrhea-predominant IBS. Finally, when administered in small ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.