Ginkgo biloba has been cultivated in Bulgaria since the end of the 19th century. Ividual specimens can be seen in almost every park. Females of the tree are considered contaminants of the landscape because their ripe seeds have a strong odor and are not utilized. We undertook this study to clarify whether ginkgo seeds of local origin can be converted from an unwanted and unused environmental pollutant into a source of beneficial compounds. Various analytical and chromatographic methods were used to quantify the major constituents and ten biologically active compounds in methanol seed extract. The results showed that the seeds are low in proteins (5%) and fats (1%); the seeds were also rich in unsaturated fatty acids and tocopherols. About 44% of nut starch was resistant to in vitro enzymatic hydrolysis. The amount of terpene trilactones in an aqueous-methanol seed extract was significantly higher than the number of flavonoids. Ginkgotoxin and ginkgolic acid were also found. The extract demonstrated weak antimicrobial activity against thirteen microorganisms. This study revealed that seeds of locally grown Ginkgo trees can be used as a source of biologically active substances. The chemical composition show similarity to those of seeds from other geographical areas.
Tamus communis L. is a plant distributed in a number of geographical areas whose rhizome has been used for centuries as an anti-inflammatory and analgesic remedy. This review aims to summarize the current knowledge of the chemical composition and biological activity of the extracts or individual compounds of the rhizome. The data for the principal secondary metabolites are systematized: sterols, steroidal saponins, phenanthrenes, dihydrophenanthrenes, etc. Results of biological tests for anti-inflammatory action, cytotoxicity, anticholinesterase effect, and xanthine oxidase inhibition are presented. Some open questions about the therapeutic properties of the plant are also addressed.
Most of the commonly applied assays used to assess antioxidant properties of plant extracts exploit the ability of some biologically active metabolites to participate in oxidation-reduction reactions with metal ions. On the other hand, most plants contain different chelated metal ions whose levels depend on the geographic origin, soil, and environmental pollutions. In this study the levels of redox-active metal ions in three plant sources were measured and extracts of these botanicals were treated with Chelex
Ⓡ
– an ion exchanger that is noteworthy for its ability to bind transition metal ions. The original and chelated extracts were subjected to three antioxidant assays based on single electron transfer. The results obtained showed statistically significant differences between the original and Chelex-treated extracts suggesting that the naturally present metal ions could interfere with the results of the three most commonly applied antioxidant methods.
The proposed pre-analytical procedure is simple and does not require special instrumental equipment.
Preliminary depletion of redox active metal ions, namely iron and copper ions could improve reproducibility of the analytical methods.
The method allows a more reliable comparison of antioxidant properties of particular botanical species from different geographic regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.