This paper presents experimental and analytical work of which the main objective was to support the introduction of a new technology for the production of sewer pipes. In this technology, the pipes produced consist of two differently produced parts. The direct part uses conventional vibro press compacted concrete. In the curved part, on the other hand, self-compacting concrete technology is used. The cooperating company, Prefa Brno a.s., defined possible negative effects on concrete of sewer pipes. The task of the research team and now the author’s team was to propose a procedure for the development of suitable self-compacting concrete variants and subsequently the design of a methodology to verify their durability in aqueous environments containing sulfates. To increase the efficiency of the development, the model mortar method was used in the experimental work. That is, instead of the original concrete, a model mortar derived from it was tested. The principle and procedure of derivation of model mortars are described in the paper. In total, eight variants of model mortars were tested, and at least three of them fulfilled the requirements. An optional but beneficial part of the carried out work was the derivation and practical application of the time-anchored-triangles-of-cracking graphical method developed during the research. This method is used to quickly compare the degree of attack of different silicate composites tested in a common bath inducing type III corrosion.
The article is focused on the medium-term negative effect of groundwater on the underground grout elements. This is the physical–mechanical effect of groundwater, which is known as erosion. We conduct a laboratory verification of the erosional resistance of grout mixtures. A new test apparatus was designed and developed, since there is no standardized method for testing at present. An erosion stability test of grout mixtures and the technical solutions of the apparatus for the test´s implementation are described. This apparatus was subsequently used for the experimental evaluation of the erosional stability of silicate grout mixtures. Grout mixtures with activated and non-activated bentonite are tested. The stabilizing effect of cellulose relative to erosion stability has been also investigated. The specimens of grout mixtures are exposed to flowing water stress for a certain period of time. The erosional stabilities of the grout mixtures are assessed on the basis of weight loss (WL) as a percentage of initial specimen weight. The lower the grout mixture weight loss, the higher its erosional stability and vice versa.
This paper focuses on the experimental determination of the shrinkage process in Self-Compacting High-Performance Concrete (SCC HPC) exposed to dry air and autogenous conditions. Special molds with dimensions of 100 mm × 60 mm × 1000 mm and 50 mm × 50 mm × 300 mm equipped with one movable head are used for the measurement. The main aim of this study is to compare the shrinkage curves of SCC HPC, which were obtained by using different measurement devices and for specimens of different sizes. In addition, two different times t0 are considered for the data evaluation to investigate the influence of this factor on the absolute value of shrinkage. In the first case, t0 is the time of the start of measurement, in the second case, t0 is the setting time. The early-shrinkage (48 h) is continuously measured using inductive sensors leant against the movable head and with strain gauges embedded inside the test specimen. To monitor the long term shrinkage, the specimens are equipped with special markers, embedded into the specimens’ upper surface or ends. These markers serve as measurement bases for the measurement using mechanical strain gauges. The test specimens are demolded after 48 h and the long term shrinkage is monitored using the embedded strain gauges (inside the specimens) and mechanical strain gauges that are placed, in regular intervals, onto the markers embedded into the specimens’ surface or ends. The results show that both types of measurement equipment give a similar result in the case of early age measurement, especially for the specimens cured under autogenous conditions. However, the early age and especially long term measurement are influenced by the position of the measurement sensors, particularly in the case of specimens cured under dry air conditions. It was proven that the time t0 have a fundamental influence on the final values of the shrinkage of investigated SCC HPC and have a significant impact on the conclusions on the size effect.
Generally, volume changes commences almost immediately after the cement and water come in contact during concrete mixing. Humidity of surrounding environment affects the magnitude of shrinkage. Hence, we took it into account by means of Eurocode 2. This paper proposes the evaluation of residual stresses in concrete. To describe the development of residual stresses, magnitude of free shrinkage, degree of its restrain and corresponding value of elastic modulus has to be known. All required quantities was measured apart from degree of restraint. It was tested three types of concrete mixtures. Obtained results show that the free shrinkage value can be significantly reduced by technological way such as the change of concrete composition.
The paper compares the sulphate ion attack resistance in several mixtures of high-performance concrete. The corrosion tests were not performed with the actual concretes, but with model mortars derived from them. The resistance was compared by means of a comparative, specifically double-comparative, methodology. The paper devotes much attention to describing this method, deriving the model mortars, and choosing the correct specimens and parameters to be observed. All important test results, which confirm the effectiveness of the method, are listed. The resistance of each mortar was identified with sufficient accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.