Use of musculoskeletal allografts has become increasingly popular, with widespread use among knee surgeons. The advantages and disadvantages of their use have been documented. In the knee, allografts are used for ligament reconstruction, meniscal transplantation, and articular surface reconstruction. The purpose of this review is to present issues surrounding the allograft industry, including regulation of tissues and tissue banks and procurement, processing, sterilization, and storage of allograft tissue. Tissue bank regulation is ultimately under the jurisdiction and authority of the Food and Drug Administration; some individual states regulate tissue banks. The American Association of Tissue Banks is a scientific organization that encourages education, research, and voluntary accreditation of tissue banks. It promotes safety and standards for retrieval, processing, storage, and distribution of transplantable human tissue. Allograft tissues are generally harvested and processed aseptically, which may not prevent contamination. Tissue sterilization is difficult and controversial. Tissue banks historically have used one of two methods of sterilization, ethylene oxide or gamma radiation. Both methods have risks and benefits. Newer methods of sterilization are being developed. Allograft tissue that is not transplanted fresh can be freeze-dried or deep frozen for storage. Ultimately, allograft transplantation in the knee facilitates knee form and function and enhances the patient's quality of life. Orthopaedic surgeons who use allograft tissue must understand the tissue banking process to provide safe and effective tissues to their patients.
Transforaminal pelvic fractures are high-energy injuries that are translationally and rotationally unstable. This study compared the biomechanical stability of triangular osteosynthesis vs 2-transsacral-screw fixation in the repair of a transforaminal pelvic fracture model. A transforaminal fracture model was created in 10 cadaveric lumbopelvic specimens. Five of the specimens were stabilized with triangular osteosynthesis, which consisted of unilateral L5-to-ilium lumbopelvic fixation and ipsilateral iliosacral screw fixation. The remaining 5 were stabilized with a 2-transsacral-screw fixation technique that consisted of 2 transsacral screws inserted across S1. All specimens were loaded cyclically and then loaded to failure. Translation and rotation were measured using the MicroScribe 3D digitizing system (Revware Inc, Raleigh, North Carolina). The 2-transsacral-screw group showed significantly greater stiffness than the triangular osteosynthesis group (2-transsacral-screw group, 248.7 N/mm [standard deviation, 73.9]; triangular osteosynthesis group, 125.0 N/mm [standard deviation, 66.9]; P=.02); however, ultimate load and rotational stiffness were not statistically significant. Compared with triangular osteosynthesis fixation, the use of 2 transsacral screws provides a comparable biomechanical stability profile in both translation and rotation. This newly revised 2-transsacral-screw construct offers the traumatologist an alternative method of repair for vertical shear fractures that provides biplanar stability. It also offers the advantage of percutaneous placement in either the prone or supine position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.