In this paper, a conceptual design of a Delta robot is developed by means of a mechatronic design methodology. A fully integrated conceptual design, clarifying the recurrence of the conceptual design process using black-box/white-box analysis, is presented using the Model Based Systems Engineering (MBSE) paradigm and the SysML language as the formal modeling tool. Multiple designs proposals are then evaluated by the non-linear Choquet integral in order to choose the most appropriate according to a multicriteria requirement. For a preliminary conceptual design, structural parameters for the Delta robot are determined by defining and solving a nonlinear constrained optimization problem, which considers the kinematic model of the robot maximizing its workspace. Both the decision making and the optimization problem are integrated and automated into a common software framework for the design process, by using a standard genetic algorithm and Monte Carlo method to set the optimized conceptual design to be rendered in Computer Aided Design (CAD) software and in a physical prototype, satisfying the technical specifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.