Currently there is a worldwide pandemic due to Covid-19, which has caused a great impact on humanity in social, economic, psychological aspects and unfortunately on health. Due to the risk that food can also be a medium to cause virus diseases, the procedures in the food industry safety programs must be revised; and, to be more specific, to disinfect Covid-19. Some effective disinfectants that have been proved to inactivate the coronavirus are: chlorine dioxide, sodium hypochlorite, quaternary compound, ozone and UV-C (shortwave ultraviolet light). In this review, some treatments used to inactivate a virus, with an emphasis to the coronavirus family, and other influenza viruses, are reported. It has been concluded that the coronavirus could be inactivated using free chlorine solutions at 30 mg/L, sodium hypochlorite 0.25 %, or Chlorine Dioxide (99% purity) diluted at 1/2.5 relation. Also, alcohol is an effective disinfectant at concentrations of 62 to 71% of ethanol. With respect to the use of the quaternary compound, it can be used at concentrations of 0.10%. Ozone is another promising disinfectant to inactivate the coronavirus and Covid-19. Doses of ozone between 10 to 20 ppm for 10 to 15 minutes are recommended to inactivate the coronavirus with 3.5 log10 reductions. However, a warning should be reported to the use of high doses of exposure because it can be a risk to human health. UV-C can inactivate the coronavirus at a value of 67 J/m 2 by 1 to 30 minutes of exposure.
Cold storage (CS) can induce a physiological disorder known as chilling injury (CI) in nectarine fruits. The main symptom is mealiness that is perceived as non-juicy fruit by consumers. Postharvest treatments such as controlled atmosphere (CA; a high CO2 concentration and low O2) have been used under cold conditions to avoid this disorder. With the objective of exploring the mechanisms involved in the CA effect on mealiness prevention, we analyzed transcriptomic changes under six conditions of “Red Pearl” nectarines by RNA-Seq. Our analysis included just harvested nectarines, juicy non-stored fruits, fruits affected for CI after CS and fruits stored in a combination of CA plus CS without CI phenotype. Nectarines stored in cold conditions combined with CA treatment resulted in less mealiness; we obtained 21.6% of juice content compared with just CS fruits (7.7%; mealy flesh). RNA-Seq data analyses were carried out to study the gene expression for different conditions assayed. During ripening, we detected that nectarines exposed to CA treatment expressed a similar number of genes compared with fruits that were not exposed to cold conditions. Firm fruits have more differentially expressed genes than soft fruits, which suggest that most important changes occur during CS. On the other hand, gene ontology analysis revealed enrichment mainly in metabolic and cellular processes. Differentially expressed genes analysis showed that low O2 concentrations combined with cold conditions slows the metabolic processes more than just the cold storage, resulting mainly in the suppression of primary metabolism and cold stress response. This is a significant step toward unraveling the molecular mechanism that explains the effectiveness of CA as a tool to prevent CI development on fruits.
Postharvest softening of grape berries is one of the main problems affecting grape quality during export. Cell wall disassembly, especially of pectin polysaccharides, has been commonly related to fruit softening, but its influence has been poorly studied in grapes during postharvest life. In order to better understand this process, the Thompson seedless (TS) variety, which has significantly decreased berry texture after prolonged cold storage, was compared to NN107, a new table grape variety with higher berry firmness. Biochemical analysis revealed a greater amount of calcium in the cell wall of the NN107 variety and less reduction of uronic acids than TS during cold storage. In addition, the activity of polygalacturonase was higher in TS than NN107 berries; meanwhile pectin methylesterase activity was similar in both varieties. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) suggests a differential pectin metabolism during prolonged cold storage. Results revealed lower pectin fragments in TS after 60 days of cold storage and shelf life (SL) compared to 30 days of cold storage and 30 + SL, while NN107 maintained the same fragment profile across all time points evaluated. Our results suggest that these important differences in cell wall metabolism during cold storage could be related to the differential berry firmness observed between these contrasting table grape varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.