We present an algorithm for detecting metaphor in sentences which was used in Shared Task on Metaphor Detection by First Workshop on Figurative Language Processing. The algorithm is based on different features and Conditional Random Fields.
This paper presents an overview of rule-based system for automatic accentuation and phonemic transcription of Russian texts for speech connected tasks, such as Automatic Speech Recognition (ASR). Two parts of the developed system, accentuation and transcription, use different approaches to achieve correct phonemic representations of input phrases. Accentuation is based on "Grammatical dictionary of the Russian language" of A.A. Zaliznyak and wiktionary corpus. To distinguish homographs, the accentuation system also utilises morphological information of the sentences based on Recurrent Neural Networks (RNN). Transcription algorithms apply the rules presented in the monograph of B.M. Lobanov and L.I. Tsirulnik "Computer Synthesis and Voice Cloning". The rules described in the present paper are implemented in an open-source module, which can be of use to any scientific study connected to ASR or Speech To Text (STT) tasks. Automatically marked up text annotations of the Russian Voxforge database were used as training data for an acoustic model in CMU Sphinx. The resulting acoustic model was evaluated on cross-validation, mean Word Accuracy being 71.2%. The developed toolkit is written in the Python language and is accessible on GitHub for any researcher interested.
For many Automatic Speech Recognition (ASR) tasks audio features as spectrograms show better results than Mel-frequency Cepstral Coefficients (MFCC), but in practice they are hard to use due to a complex dimensionality of a feature space. The following paper presents an alternative approach towards generating compressed spectrogram representation, based on Convolutional Variational Autoencoders (VAE). A Convolutional VAE model was trained on a subsample of the LibriSpeech dataset to reconstruct short fragments of audio spectrograms (25 ms) from a 13-dimensional embedding. The trained model for a 40-dimensional (300 ms) embedding was used to generate features for corpus of spoken commands on the GoogleSpeechCommands dataset. Using the generated features an ASR system was built and compared to the model with MFCC features.
For many Automatic Speech Recognition (ASR) tasks audio features as spectrograms show better results than Mel-frequency Cepstral Coefficients (MFCC), but in practice they are hard to use due to a complex dimensionality of a feature space. The following paper presents an alternative approach towards generating compressed spectrogram representation, based on Convolutional Variational Autoencoders (VAE). A Convolutional VAE model was trained on a subsample of the LibriSpeech dataset to reconstruct short fragments of audio spectrograms (25 ms) from a 13-dimensional embedding. The trained model for a 40-dimensional (300 ms) embedding was used to generate features for corpus of spoken commands on the GoogleSpeech-Commands dataset. Using the generated features an ASR system was built and compared to the model with MFCC features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.