In many animal societies, groups of individuals form stable social units that are shaped by well-delineated dominance hierarchies and a range of affiliative relationships. How do socially complex groups maintain cohesion and achieve collective movement? Using high-resolution GPS tracking of members of a wild baboon troop, we test whether collective movement in stable social groups is governed by interactions among local neighbours (commonly found in groups with largely anonymous memberships), social affiliates, and/or by individuals paying attention to global group structure. We construct candidate movement prediction models and evaluate their ability to predict the future trajectory of focal individuals. We find that baboon movements are best predicted by 4 to 6 neighbours. While these are generally individuals’ nearest neighbours, we find that baboons have distinct preferences for particular neighbours, and that these social affiliates best predict individual location at longer time scales (>10 minutes). Our results support existing theoretical and empirical studies highlighting the importance of local rules in driving collective outcomes, such as collective departures, in primates. We extend previous studies by elucidating the rules that maintain cohesion in baboons ‘on the move’, as well as the different temporal scales of social interactions that are at play.
Behavior initiation is a form of leadership and is an important aspect of social organization that affects the processes of group formation, dynamics, and decision-making in human societies and other social animal species. In this work, we formalize the C oordination I nitiator I nference P roblem and propose a simple yet powerful framework for extracting periods of coordinated activity and determining individuals who initiated this coordination, based solely on the activity of individuals within a group during those periods. The proposed approach, given arbitrary individual time series, automatically (1) identifies times of coordinated group activity, (2) determines the identities of initiators of those activities, and (3) classifies the likely mechanism by which the group coordination occurred, all of which are novel computational tasks. We demonstrate our framework on both simulated and real-world data: trajectories tracking of animals as well as stock market data. Our method is competitive with existing global leadership inference methods but provides the first approaches for local leadership and coordination mechanism classification. Our results are consistent with ground-truthed biological data and the framework finds many known events in financial data which are not otherwise reflected in the aggregate NASDAQ index. Our method is easily generalizable to any coordinated time series data from interacting entities.
Networks represent relationships between entities in many complex systems, spanning from online social interactions to biological cell development and brain connectivity. In many cases, relationships between entities are unambiguously known: are two users "friends" in a social network? Do two researchers collaborate on a published article? Do two road segments in a transportation system intersect? These are directly observable in the system in question. In most cases, relationships between nodes are not directly observable and must be inferred: Does one gene regulate the expression of another? Do two animals who physically co-locate have a social bond? Who infected whom in a disease outbreak in a population? Existing approaches for inferring networks from data are found across many application domains and use specialized knowledge to infer and measure the quality of inferred network for a specific task or hypothesis. However, current research lacks a rigorous methodology that employs standard statistical validation on inferred models. In this survey, we examine (1) how network representations are constructed from underlying data, (2) the variety of questions and tasks on these representations over several domains, and (3) validation strategies for measuring the inferred network's capability of answering questions on the system of interest.
Abstract-Networks are models representing relationships between entities. Often these relationships are explicitly given, or we must learn a representation which generalizes and predicts observed behavior in underlying individual data (e.g. attributes or labels). Whether given or inferred, choosing the best representation affects subsequent tasks and questions on the network. This work focuses on model selection to evaluate network representations from data, focusing on fundamental predictive tasks on networks. We present a modular methodology using general, interpretable network models, task neighborhood functions found across domains, and several criteria for robust model selection. We demonstrate our methodology on three online user activity datasets and show that network model selection for the appropriate network task vs. an alternate task increases performance by an order of magnitude in our experiments.
IMPORTANCEMachine learning could be used to predict the likelihood of diagnosis and severity of illness. Lack of COVID-19 patient data has hindered the data science community in developing models to aid in the response to the pandemic. OBJECTIVES To describe the rapid development and evaluation of clinical algorithms to predict COVID-19 diagnosis and hospitalization using patient data by citizen scientists, provide an unbiased assessment of model performance, and benchmark model performance on subgroups. DESIGN, SETTING, AND PARTICIPANTS This diagnostic and prognostic study operated a continuous, crowdsourced challenge using a model-to-data approach to securely enable the use of regularly updated COVID-19 patient data from the University of Washington by participants from May 6 to December 23, 2020. A postchallenge analysis was conducted from December 24, 2020, to April 7, 2021, to assess the generalizability of models on the cumulative data set as well as subgroups stratified by age, sex, race, and time of COVID-19 test. By December 23, 2020, this challenge engaged 482 participants from 90 teams and 7 countries. MAIN OUTCOMES AND MEASURES Machine learning algorithms used patient data and output a score that represented the probability of patients receiving a positive COVID-19 test result or being hospitalized within 21 days after receiving a positive COVID-19 test result. Algorithms were evaluated using area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC) scores. Ensemble models aggregating models from the top challenge teams were developed and evaluated. RESULTSIn the analysis using the cumulative data set, the best performance for COVID-19 diagnosis prediction was an AUROC of 0.776 (95% CI, 0.775-0.777) and an AUPRC of 0.297, and for hospitalization prediction, an AUROC of 0.796 (95% CI, 0.794-0.798) and an AUPRC of 0.188.Analysis on top models submitting to the challenge showed consistently better model performance on the female group than the male group. Among all age groups, the best performance was obtained for the 25-to 49-year age group, and the worst performance was obtained for the group aged 17 years or younger. CONCLUSIONS AND RELEVANCEIn this diagnostic and prognostic study, models submitted by citizen scientists achieved high performance for the prediction of COVID-19 testing and hospitalization outcomes. Evaluation of challenge models on demographic subgroups and (continued) Key Points Question What can be learned from a crowdsourced challenge for the prediction of COVID-19 diagnosis and hospitalization? Findings This diagnostic and prognostic study used a model-to-data approach to implement a continuous benchmarking challenge that has enabled 482 participants to join in the effort to use regularly updated COVID-19 patient data to build machine learning models for COVID-19 diagnosis and hospitalization prediction. Machine learning models showed high accuracy in COVID-19 outcome prediction, but analysis of subgroups and prospective data re...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.