For many years, the oil and gas industry has utilized superduplex stainless steels due to their high strength and excellent corrosion resistance. Wire arc additive manufacturing (WAAM) was used with superduplex filler wire to create walls with different heat input. Due to the multiple heating and cooling cycles during layer deposition, brittle secondary phases may form such as intermetallic sigma (σ) phase. By inspecting deposited walls within wide range of heat inputs (0.40–0.87 kJ/mm), no intermetallic phases formed due to low inter-pass temperatures used, together with the high Ni content in the applied wire. Lower mechanical properties were observed with high heat inputs due to low ferrite volume fraction, precipitation of Cr nitrides and formation of secondary austenite. The walls showed good toughness values based on both Charpy V-notch and CTOD (crack tip opening displacement) testing.
In the present work, the metallurgical changes in the welding of clad pipelines are studied. Clad pipes consist of a complex multi-material system, with (i) the clad being stainless steel or a nickel-based superalloy, (ii) the pipe being API X60 or X65 high-strength carbon steel, and (iii) the welding wire being a nickel-based superalloy or stainless steel in the root and hot pass, with a nickel or iron buffer layer, followed by filling with carbon steel wire. Alternatively, the corrosion resistant alloy may be used only. During production of the clad pipe, at the diffusion bonding temperature, substantial material changes may occur. These are carbon diffusion from the carbon steel to the clad, followed by the formation of hard martensite at the interface on cooling. The solidification behavior and microstructure evolution in the weld metal and in the heat-affected zone are further discussed for the different material combinations. Solidification behavior was also numerically estimated to show solidification parameters and resulting solidification modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.