This article studies the derivatives pricing using a method of spectral analysis, a theory of singular and regular perturbations. Using a risk-neutral assessment, the authors obtain the Cauchy problem, which allows to calculate the approximate price of derivative assets and their volatility based on the diffusion equation with fast and slow variables of nonlocal volatility, and they obtain a model with multidimensional stochastic volatility. Applying a spectral theory of self-adjoint operators in Hilbert space and a theory of singular and regular perturbations, an analytic formula for approximate asset prices is established, which is described by the CEV model with stochastic volatility dependent on l-fast variables and r-slowly variables, l ≥ 1, r ≥ 1, l ∈ N, r ∈ N and a local variable. Applying the Sturm-Liouville theory, Fredholm’s alternatives, as well as the analysis of singular and regular perturbations at different time scales, the authors obtained explicit formulas for derivatives price approximations. To obtain explicit formulae, it is necessary to solve 2l Poisson equations.
In the article, using the modified Levy method, a Green's function for a class of ultraparabolic equations of high order with an arbitrary number of parabolic degeneration groups is constructed. The modified Levy method is developed for high-order Kolmogorov equations with coefficients depending on all variables, while the frozen point, which is a parametrix, is chosen so that an exponential estimate of the fundamental solution and its derivatives is conveniently used.
The theoretical bases of this paper are the theory of spectral analysis and the theory of singular and regular perturbations. We obtain an approximate price of Ornstein-Uhlenbeck double barrier options with multidimensional stochastic diffusion as expansion in eigenfunctions using infinitesimal generators of a $(l+r+1)$-dimensional diffusion in Hilbert spaces. The theorem of accuracy estimation of options prices approximation is established. We also obtain explicit formulas for derivatives price based on the expansion in eigenfunctions and eigenvalues of self-adjoint operators using boundary value problems for singular and regular perturbations.
The paper found the explicit form of the fundamental solution of Cauchy problem for the equation of Kolmogorov type that has a finite number groups of spatial variables which are degenerate parabolic.
This paper develops a systematic method for calculating approximate prices for a wide range of securities implying the tools of spectral analysis, singular and regular perturbation theory. Price options depend on stochastic volatility, which may be multiscale, in the sense that it may be driven by one fast-varying and one slow-varying factor. The found the approximate price of two-barrier options with multifactor volatility as a schedule for own functions. The theorem of estimation of accuracy of approximation of option prices is established. Explicit formulas have been found for finding the value of derivatives based on the development of eigenfunctions and eigenvalues of self-adjoint operators using boundary-value problems for singular and regular perturbations. This article develops a general method of obtaining a guide price for a broad class of securities. A general theory of derivative valuation of options generated by diffusion processes is developed. The algorithm of calculating the approximate price is given. The accuracy of the estimates is established. The theory developed is applied to a diffusion operator, which is decomposed by eigenfunctions and eigenvalues. The purpose of the article is to develop an algorithm for finding the approximate price of two-barrier options and to find explicit formulas for finding the value of derivatives based on the development of self-functions and eigenvalues of self-adjoint operators using boundary-value problems for singular and regular perturbations. Price finding is reduced to the problem solving of eigenvalues and eigenfunctions of a certain equation. The main advantage of our pricing methodology is that, by combining methods in spectral theory, regular perturbation theory, and singular perturbation theory, we reduce everything to equations to find eigenfunctions and eigenvalues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.