Aim Meta-community structure is a function of both local (site-specific) and regional (landscape-level) ecological factors, and the relative importance of each may be mediated by the dispersal ability of organisms. Here, we used aquatic invertebrate communities to investigate the relationship between local and regional factors in explaining distance decay relationships (DDRs) in fragmented dendritic stream networks.Location Dryland streams distributed within a 400-km 2 section of the San Pedro River basin, south-eastern Arizona, USA.Methods We combined fine-scale local information (flow and habitat characteristics) with regional-scale information to explain DDR patterns in community composition of aquatic invertebrate species with a wide range of dispersal abilities. We used a novel application of a landscape resistance modelling approach (originally developed for landscape genetic studies) that simultaneously assessed the importance of local and regional ecological factors as well as dispersal ability of organisms.Results We found evidence that both local and regional factors influenced aquatic invertebrate DDRs in dryland stream networks, and the importance of each factor depended on the dispersal capacities of the organisms. Local and weak dispersers were more affected by site-specific factors, intermediate dispersers by landscape-level factors, and strong dispersers showed no discernable pattern. This resulted in a strongly hump-shaped relationship between dispersal ability and landscape-level factors, where only moderate dispersers showed evidence of DDRs. Unlike most other studies of dendritic networks, our results suggest that overland pathways, using perennial refugia as stepping-stones, might be the main dispersal route in fragmented stream networks.Main conclusions We suggest that using a combination of landscape and local distance measures can help to unravel meta-community patterns in dendritic systems. Our findings have important conservation implications, such as the need to manage river systems for organisms that span a wide variety of dispersal abilities and local ecological requirements. Our results also highlight the need to preserve perennial refugia in fragmented networks, as they may ensure the viability of aquatic meta-communities by facilitating dispersal.
Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.
Habitat requirements and landscape features can exert strong influences on the population structure of organisms. For aquatic organisms in particular, hydrologic requirements can dictate the extent of available habitat, and thus the degree of genetic connectivity among populations. We used a landscape genetics approach to evaluate hypotheses regarding the influence of landscape features on connectivity among populations of the giant water bug Abedus herberti (Hemiptera: Belostomatidae). Abedus herberti is restricted to naturally-fragmented, perennial stream habitats in arid regions of North America. This species is exceptional because it is flightless at all life stages. Thus, we hypothesized a high degree of population genetic structure in A. herberti due to hydrologic constraints on habitat and low dispersal ability of the organism. A total of 617 individuals were sampled from 20 populations across southeastern Arizona, USA and genotyped at 10 microsatellite loci. We used a Bayesian clustering method to delineate genetic groups among populations. To determine which of six landscape variables (representing hypotheses of landscape-level connectivity) has the strongest association with genetic connectivity in A. herberti, we used information-theoretic model selection. Strong population structure was evident among A. herberti populations, even at small spatial scales. At a larger scale, A. herberti populations were hierarchically structured across the study region, with groups of related populations generally occurring in the same mountain range, rather than in the same major watershed. Surprisingly, stream network connectivity was not important for explaining among-population patterns. Only the Curvature landscape variable was identified as having an association with genetic connectivity in A. herberti. The Curvature variable hypothesizes that gene flow tends to occur where local topography is concave, such as within stream drainages and dry gullies. Thus, our results suggest that population connectivity may depend on the shape of local overland topography rather than direct connectivity within stream drainage networks.
A key parameter in the theory and application of population genetics is the effective population size (N e ): the number of breeding individuals in a conceptual, ideal population that would lose genetic diversity at the same rate as the real population being studied (Wright 1931;Charlesworth 2009). How a population responds to evolutionary forces depends on N e , rather than the actual number of individuals in the population (N, the census population size). Although direct estimates of N e can be calculated from demographic data, such data are often prohibitively difficult to obtain (Wang 2005). Given this limitation, and the importance of N e in population and conservation genetics, it is not surprising that considerable effort has been put into developing methods of using molecular genetic data to obtain indirect estimates of N e .With advances in these methods and with the increasing accessibility of multilocus genotype data, it has recently become practicable to estimate the effective sizes of many populations of the same species (Luikart et al. 2010;Waples and Do, 2010). Such an effort is highly worthwhile for a couple of reasons. First, by gathering estimates from multiple populations, investigators might identify a reasonably narrow range of typical N e values for a species, an "educated guess" for the value of this parameter in any given population. This information could be used to approximate N e in evolutionary modeling of the species. For example, an expected N e could be used as input for simulations of evolutionary processes or as a Bayesian prior in analyses used to infer other population genetic parameters, such as migration rates or selection coefficients. Expected N e values for a species would also be useful in conservation and management, in situations in which an estimate of N e for a population is desired but genetic and demographic data are unavailable. In such cases, it would be helpful to know if populations of the focal species typically have, for example, N e estimates less than 100. Furthermore, when estimates of both N e and N (census size) can be obtained for multiple populations, it may be possible to identify the typical range of N e /N for the species. If so, estimates of N for the species might then be used as proxies for N e , when the former are easier to obtain that the latter.Second, a comparative analysis of N e estimates from multiple populations across more than one species can help generate hypotheses about what particular biological factors influence N e within species. Consistent differences in N e among species might correspond to differences in habitat, dispersal capabilities, or breeding behaviors. Hypotheses generated in a comparative analysis could then be tested in subsequent studies. Similarly, the factors that influence N e within species can also be investigated by evaluating correlations between environmental variables and N e for multiple populations of a species.Despite the fact that such multipopulation, empirical investigations of N e can lead to valuable...
The study of how population genetic structure is shaped by attributes of the environment is a central scientific pursuit in ecology and conservation. But limited resources may prohibit landscape genetics studies for many threatened species, particularly given the pace of current environmental change. Understanding the extent to which species' ecological strategies--their life histories, biology, and behavior-predict patterns and drivers of population connectivity is a critical step in evaluating the potential of multi-taxa inference in landscape genetics. We present results of a landscape genetic study of three dryland amphibians: the canyon treefrog (Hyla arenicolor), red-spotted toad (Anaxyrus punctatus), and Mexican spadefoot (Spea multiplicata). These species characterize a range of ecological strategies, driven primarily by different water dependencies, enabling amphibian survival in arid and semiarid environments. We examined a suite of hypothesized relationships between genetic connectivity and landscape connectivity across species. We found a positive relationship between population differentiation and water dependency, e.g., longer larval development periods and site fidelity for reliable water sources. We also found that aquatic connectivity is important for all species, particularly when considered with topography (slope). The effect of spatial scale varied by species, with canyon treefrogs and Mexican spadefoots characterized by relatively consistent results at different scales in contrast to the stark differences in results for red-spotted toads at different scales. Using ecological information to predict relationships between genetic and landscape connectivity is a promising approach for multi-taxa inference and may help inform conservation efforts where single-species genetic studies are not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.