Background To conduct a preliminary evaluation of the feasibility of visual field fast (VFF), a free iPad-based noise-field perimeter, in detecting glaucomatous scotomas versus the clinical-standard Humphrey visual field (HVF) test. VFF confronts subjects with a screen of flickering stimulus, allowing the immediate perception of scotomas. Methods This was a cross-sectional observational study of 66 glaucoma patients (66 eyes) and 30 healthy controls (30 eyes). All patients had no other visual field disorders. VFF was compared against HVF in terms of whole field and quadrants for the following: (1) correspondence in scotoma detection. (2) Agreement and correlation of the scotoma size (percentage of abnormal visual field area). (3) Test duration. Other domains tested included: (1) correlation of VFF scotoma area with the severity of visual field loss on HVF (mean deviation, MD; visual field index, VFI). (2) Repeatability of VFF. (3) Patient descriptors of scotomas. Results Using HVF pattern deviation plot as a reference, VFF detected 52/57 (91.2%) of glaucoma subjects with 1 false-positive (control) (kappa = 0.86). 146/184 (79.3%) of abnormal quadrants (visual field defect present) were localized and 23/157 (14.6%) healthy quadrants were falsely identified as abnormal (kappa = 0.61). VFF underestimated scotoma area as compared to HVF (21.0% versus 44.0%, p < 0.01) but correlated positively ( r = 0.268, p = 0.044) with HVF area and negatively with VFI ( r = −0.340, p = 0.01) and MD ( r = −0.398, p < 0.01). Using HVF total deviation plot as reference, VFF’s glaucoma detection rate remained unchanged (kappa = 0.86) with similar quadrant detection (kappa = 0.68). However, a greater underestimation of scotoma area was observed (21.0% versus 85.4%, p < 0.01). VFF’s quantitative repeatability was excellent for whole field (intraclass correlation coefficient, ICC: 0.96; p < 0.0001) and quadrants (ICC: 0.82–0.96; all p < 0.001). Qualitatively, 35/37 (94.6%) of subjects reported reduced luminance and flicker in scotomas, with similar morphologies on retests. VFF is faster than HVF SITA-Standard in glaucoma (3.60 ± 1.85 min versus 6.92 ± 1.12 min, p < 0.01) and control (1.12 ± 0.486 min versus 5.16 ± 0.727 min, p < 0.01). Conclusion This early model of VFF accurately detected scotomas with high repeatability. However, its accuracy in localizing and quantifying the scotoma can be improved. Considering its portability and cost-effectiveness, VFF demonstrated potential as a general screening tool for moderate-to-severe glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.