Landslides interacting with large infrastructures represent a major problem for the economy, society as a whole, and the safety of workers. Continuous monitoring for 23 months using an integrated platform with a ground-based SAR interferometer (GB-InSAR), a weather station, and an automatic camera gave us the opportunity to analyze the response of an unstable slope to the different phases of work. The deformational behavior of both the natural slope and the man-made structures was recorded and interpreted in relation to the working stages and the rainfall conditions during the whole monitoring period. A typical pattern of displacement was identified for shallow landslides, debris produced by the excavation and gabions, metallic walls, and anchored bulkheads. Furthermore, insights into the dynamics and behavior of the slope and the man-made structures that interact with the landslide were obtained. Extreme rainfall is the main trigger of shallow landslides and gabion deformations, while anchored bulkheads are less influenced by rainfalls. Movement of debris that is produced by excavations and temporary metallic barrier deformation are closely related to each other. The herein proposed monitoring platform is very efficient in monitoring unstable slopes that are affected by human activities. Moreover, the recorded patterns of displacement in the slope and the man-made structures can be used as reference data for similar studies and engineering designs
Ten small rock slides (with a volume ranging from 10 1 to 10 3 m 3 ) on a slope affected by working activities were detected, located, and timed using pictures collected by an automatic camera during 40months of continuous monitoring with terrestrial SAR interferometry (TInSAR). These landslides were analyzed in detail by examining their pre-failure time series of displacement inferred from high-sampling frequency (approximately 5min) TInSAR monitoring. In most of these cases, a typical creep behavior was observed with the displacement starting 370 to 12h before the collapse. Additionally, an evident acceleration decrease of the displacement a few hours before the failure was observed in some rock/debris slides, thus suggesting the possibility of a mechanical feature of the slope that differs from the classical creep theory. The efficacy of the linear Fukuzono approach for the prediction of time of failure was tested by back-analyzing the ten landslides. Furthermore, a modified Fukuzono approach named average data Fukuzono (ADF) was implemented and applied to our dataset. Such an approach is able to improve forecasting effectiveness by reducing the error due to anomalies in the time series of displacement, like the acceleration decrease before failure. A prediction with a temporal accuracy of at least 2h was obtained for all the analyzed rock/debris slides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.