Static deflection as well as free and forced large-amplitude vibrations of thin rectangular rubber plates under uniformly distributed pressure are investigated. Both physical, through a neo-Hookean constitutive law to describe the non-linear elastic deformation of the material, and geometrical non-linearities are accounted for. The deflections of a thin initially flat plate are described by the von Kármán non-linear plate theory. A method for building a local model, which approximates the plate behavior around a deformed configuration, is proposed. This local model takes the form of a system of ordinary differential equations with quadratic and cubic non-linearities. The corresponding results are compared to the exact solution and are found to be accurate. Two models reflecting both physical and geometrical non-linearities and geometrical non-linearities only are compared. It is found that the sensitivity of the deflection to the physically induced non-linearities at moderate strains is significant.
International audienceStatic deflection as well as free and forced nonlinear vibration of thin square plates made of hyperelastic materials are investigated. Two types of materials, namely rubber and soft biological tissues, are considered. The involved physical nonlinearities are described through the Neo-Hookean, Mooney-Rivlin, and Ogden hyperelastic laws; geometrical nonlinearities are modeled by the Novozhilov nonlinear shell theory. Dynamic local models are first built in the vicinity of a static configuration of interest that has been previously calculated. This gives rise to the approximation of the plate's behavior in the form of a system of ordinary differential equations with quadratic and cubic nonlinear terms in displacement. Numerical results are compared and validated in the static case via a commercial finite element software package: they are found to be accurate for deflections reaching 100 times the thickness of the plate. The frequency shift between low- and large-amplitude vibrations weakens with an increased initial deflection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.