The self-assembly of monodisperse inorganic nanoparticles into highly ordered arrays (superlattices) represents an exciting route to materials and devices with new functions. It allows programming their properties by varying the size, shape, and composition of the nanoparticles, as well as the packing order of the assemblies. While substantial progress has been achieved in the fabrication of superlattice materials made of nanospheres, limited advances have been made in growing similar materials with anisotropic building blocks, which is particularly true for free-standing two-dimensional superlattices. In this paper, we report the controlled growth of free-standing, large-area, monolayered gold-nanorod superlattice sheets by polymer ligands in an entropy-driven interfacial self-assembly process. Furthermore, we experimentally characterize the plasmonic properties of horizontally aligned sheets (H-sheets) and vertically aligned sheets (V-sheets) and show that observed features can be well described using a theoretical model based on the discrete-dipole approximation. Our polymer-ligand-based strategy may be extended to other anisotropic plasmonic building blocks, offering a robust and inexpensive avenue to plasmonic nanosheets for various applications in nanophotonic devices and sensors.
We report on an anomalous size dependence of the room-temperature photoluminescence decay time from the lowest-energy state of PbS quantum dots in colloidal solution, which was found using the transient luminescence spectroscopy. The observed 10-fold reduction in the decay time (from ~2.5 to 0.25 μs) with the increase in the quantum dots' diameter is explained by the existence of phonon-induced transitions between the in-gap state-whose energy drastically depends on the diameter-and the fundamental state of the quantum dots.
Carbon dots (CDots) are a promising biocompatible nanoscale source of light, yet the origin of their emission remains under debate. Here, we show that all the distinctive optical properties of CDots, including the giant Stokes shift of photoluminescence and the strong dependence of emission color on excitation wavelength, can be explained by the linear optical response of the partially sp2-hybridized carbon domains located on the surface of the CDots’ sp3-hybridized amorphous cores. Using a simple quantum chemical approach, we show that the domain hybridization factor determines the localization of electrons and the electronic bandgap inside the domains and analyze how the distribution of this factor affects the emission properties of CDots. Our calculation data fully agree with the experimental optical properties of CDots, confirming the overall theoretical picture underlying the model. It is also demonstrated that fabrication of CDots with large hybridization factors of carbon domains shifts their emission to the red side of the visible spectrum, without a need to modify the size or shape of the CDots. Our theoretical model provides a useful tool for experimentalists and may lead to extending the applications of CDots in biophysics, optoelectronics, and photovoltaics.
We present an improved analytical model describing transmittance of a metal-dielectric-metal (MDM) waveguide coupled to an arbitrary number of stubs. The model is built on the well-known analogy between MDM waveguides and microwave transmission lines. This analogy allows one to establish equivalent networks for different MDM-waveguide geometries and to calculate their optical transmission spectra using standard analytical tools of transmission-line theory. A substantial advantage of our model compared to earlier works is that it precisely incorporates the dissipation of surface plasmon polaritons resulting from ohmic losses inside any metal at optical frequencies. We derive analytical expressions for transmittance of MDM waveguides coupled to single and double stubs as well as to N identical stubs with a periodic arrangement. We show that certain phase-matching conditions must be satisfied to provide opt al filtering characteristics for such waveguides. To check the accuracy of our model, its results are compared with numerical data obtained from the full-blown finite-difference time-domain simulations. Close agreement between the two suggests that our analytical model is suitable for rapid design optimization of MDM-waveguide-based compact photonic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.