Cytokinins (CKs) are well-established as important phytohormonal regulators of plant growth and development. An increasing number of studies have also revealed the function of these hormones in plant responses to biotic and abiotic stresses. While the function of certain CK classes, including trans-zeatin and isopentenyladenine-type CKs, have been studied in detail, the role of cis-zeatin-type CKs (cZs) in plant development and in mediating environmental interactions is less well defined. Here we provide a comprehensive summary of the current knowledge about abundance, metabolism and activities of cZs in plants. We outline the history of their analysis and the metabolic routes comprising cZ biosynthesis and degradation. Further we provide an overview of changes in the pools of cZs during plant development and environmental interactions. We summarize studies that investigate the role of cZs in regulating plant development and defence responses to pathogen and herbivore attack and highlight their potential role as 'novel' stress-response markers. Since the functional roles of cZs remain largely based on correlative data and genetic manipulations of their biosynthesis, inactivation and degradation are few, we suggest experimental approaches using transgenic plants altered in cZ levels to further uncover their roles in plant growth and environmental interactions and their potential for crop improvement.
Nearly half a century ago insect herbivores were found to induce the formation of green islands by manipulating cytokinin (CK) levels. However, the response of the CK pathway to attack by chewing insect herbivores remains unclear. Here, we characterize the CK pathway of Nicotiana attenuata (Torr. ex S. Wats.) and its response to wounding and perception of herbivore-associated molecular patterns (HAMPs). We identified 44 genes involved in CK biosynthesis, inactivation, degradation, and signaling. Leaf wounding rapidly induced transcriptional changes in multiple genes throughout the pathway, as well as in the levels of CKs, including isopentenyladenosine and cis-zeatin riboside; perception of HAMPs present in the oral secretions (OS) of the specialist herbivore Manduca sexta amplified these responses. The jasmonate pathway, which triggers many herbivore-induced processes, was not required for these HAMP-triggered changes, but rather suppressed the CK responses. Interestingly CK pathway changes were observed also in systemic leaves in response to wounding and OS application indicating a role of CKs in mediating long distance systemic processes in response to herbivory. Since wounding and grasshopper OS elicited similar accumulations of CKs in Arabidopsis thaliana L., we propose that CKs are integral components of wounding and HAMP-triggered responses in many plant species.
SummaryHerbivore attack elicits changes in cytokinins (CKs), but how these changes influence defense signaling remains poorly described. We investigated the influence of the CK pathway on the well-described inducible defense pathways of Nicotiana attenuata in response to wounding with and without elicitors from the specialist herbivore Manduca sexta.CK pathway manipulation often suffers from substantial side effects on plant growth and development. We therefore used multiple manipulation tools including spray application of CKs, chemically-inducible expression of the CK biosynthesis enzyme isopentenyltransferase, and transient and constitutive RNAi-mediated gene silencing of CK receptors to resolve the function of CKs in plant defense.The results demonstrated that CK concentrations in leaves and perception through CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2) and NaCHK3 were important for the accumulation of jasmonic acid (JA) and phenolamides and proteinase inhibitor activity. By contrast, the CK pathway did not promote the accumulation of the active JA-isoleucine conjugate and negatively regulated the release of specific green leaf volatile esters. Interestingly, CK signaling also promotes the systemic phenolamide accumulation.We conclude that the CK pathway is an important regulator of herbivory-inducible defense signaling and chemistry, which expands its reported participation in adjusting a plant's physiology to abiotic and biotic stress responses.
SummaryPlant invertases are sucrolytic enzymes that are essential for the regulation of carbohydrate metabolism and source-sink relationships. While their activity has been well documented during abiotic and biotic stresses, the role of proteinaceous invertase inhibitors in regulating these changes is unknown.Here, we identify a putative Nicotiana attenuata cell wall invertase inhibitor (NaCWII) which is strongly up-regulated in a jasmonate (JA)-dependent manner following simulated attack by the specialist herbivore Manduca sexta. To understand the role of NaCWII in planta, we silenced its expression by RNA interference and measured changes in primary and secondary metabolism and plant growth following simulated herbivory.NaCWII-silenced plants displayed a stronger depletion of carbohydrates and a reduced capacity to increase secondary metabolite pools relative to their empty vector control counterparts. This coincided with the attenuation of herbivore-induced CWI inhibition and growth suppression characteristic of wild-type plants.Together our findings suggest that NaCWII may act as a regulatory switch located downstream of JA accumulation which fine-tunes the plant's balance between growth and defense metabolism under herbivore attack. Although carbohydrates are not typically viewed as key factors in plant growth and defense, our study shows that interfering with their catabolism strongly influences plant responses to herbivory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.