New organic superbases have been designed using the concept of multiple intramolecular hydrogen bonds. Substituents capable of forming strong intramolecular H-bonds were selected on the basis of the energy of stabilization that occurs upon the formation of a complex between N,N',N"-trimethylguanidine and small model molecules. The proton affinities and the corresponding pK(a) values in acetonitrile of the new superbases are examined by Density Functional Theory (DFT). It is shown that N,N',N"-substitution of guanidine with appropriate substituents results in new organic superbases with gas phase proton affinities between 286 and 293 kcal mol(-1), thus being 15 to 20 kcal mol(-1) more basic than parental superbase N,N',N"-tris[(3-dimethylamino)propyl]-guanidine (tris-DMPG), whereas estimated pK(a) values in acetonitrile range between 29.5 and 33.2.
Model studies of prebiotic chemistry have revealed compelling routes for the formation of the building blocks of proteins and RNA, but not DNA. Today, deoxynucleotides required for the construction of DNA are produced by reduction of nucleotides catalysed by ribonucleotide reductases, which are radical enzymes. This study considers potential non-enzymatic routes via intermediate radicals for the ancient formation of deoxynucleotides. In this context, several mechanisms for ribonucleotide reduction, in a putative H2 S/HS(.) environment, are characterized using computational chemistry. A bio-inspired mechanistic cycle involving a keto intermediate and HSSH production is found to be potentially viable. An alternative pathway, proceeding through an enol intermediate is found to exhibit similar energetic requirements. Non-cyclical pathways, in which HSS(.) is generated in the final step instead of HS(.) , show a markedly increased thermodynamic driving force (ca. 70 kJ mol(-1) ) and thus warrant serious consideration in the context of the prebiotic ribonucleotide reduction.
The growth mechanism and electrochemical properties of an oxide film on AISI 304 grade stainless steel were studied in 0.01 and 0.1 mol L−1 fluoride solutions with different pH values (4.5, 5.5, 6.5) by means of electrochemical techniques. The anodic growth and stability of the oxide film on the stainless steel were characterized using cyclic voltammetry. Potentiodynamic analysis suggests that the oxide film growth occurs according to the high-field mechanism. Electric field strength, high-field growth exponential law constants, ionic conductivity through the film and half jump distance were determined. The electrochemical properties of the oxide film, formed spontaneously at the open circuit potential, were studied using electrochemical impedance spectroscopy. The results showed that the fluoride concentration has more considerable influence on the dissolution rate and the resistance of the oxide film than the pH.
The effect of Satureja montana L. extract (SM) and phenolic fraction of Satureja montana L. (PF) on the corrosion behaviour of iron in 0.1 mol L-1 sodium chloride solution was studied by electrochemical techniques, UV/Vis spectrophotometry and atomic absorption spectrometry. The results of all techniques showed that SM and PF contributed to iron corrosion inhibition. The calculated inhibition efficiency values were about 45% for SM and 55% for PF. Results indicate that the inhibitive action occurs via a precipitation of the Fe-complex onto the iron surface which resulting in a decrease of the passive current density. The atomic absorption spectrometry (AAS) method was applied to the quantitative determination of iron in solution. The obtained results demonstrated good agreement with results obtained by electrochemical techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.