BackgroundBio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery.ResultsThe environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which results in a net negative impact on ‘Carcinogenics’ and ‘Respiratory effects’, and substantial reduction in the ‘Smog’ and ‘Ecotoxicity’ impacts. The production of woody biomass-based bio-jet fuel, however, did not show any significant improvement in the ‘Acidification’ and ‘Eutrophication’ impact categories.ConclusionsThe study reveals that residual woody biomass recovered from slash piles represents a more sustainable alternative to petroleum for the production of jet fuel with a lower impact on global warming and local pollution. Future research should focus on the optimization of chemical processes of the bio-refinery to reduce the impacts on the ‘Acidification’ and ‘Eutrophication’ impact categories.
To reduce fire hazards and expand high-value applications of lignocellulosic materials, thin films comprising graphene nanoplatelets (GnPs) and multi-wall carbon nanotubes (CNTs) pre-adsorbed with alkali lignin were deposited by a Meyer rod process. Lightweight and highly flexible papers with increased gas impermeability were obtained by coating a protective layer of carbon nanomaterials in a randomly oriented and overlapped network structure. Assessment of the thermal and flammability properties of papers containing as low as 4 wt % carbon nanomaterials exhibited self-extinguishing behavior and yielded up to 83.5% and 87.7% reduction in weight loss and burning area, respectively, compared to the blank papers. The maximum burning temperature as measured by infrared pyrometry also decreased from 834 °C to 705 °C with the presence of flame retardants. Furthermore, papers coated with composites of GnPs and CNTs pre-adsorbed with lignin showed enhanced thermal stability and superior fire resistance than samples treated with either component alone. These outstanding flame-retardant properties can be attributed to the synergistic effects between GnPs, CNTs and lignin, enhancing physical barrier characteristics, formation of char and thermal management of the material. These results provide great opportunities for the development of efficient, cost-effective and environmentally sustainable flame retardants.
This study was an update on the 2000 life-cycle inventory data on material and energy inputs associated with the production of 1 m3 of glued-laminated (glulam) timbers produced in the Pacific Northwest (PNW) and the Southeast (SE) regions of the United States. This article looks at the cradle to gate for the entire glulam production processes, which include forest harvest, lamstock production, and glulam beam production. Data collected from glulam beam manufacturers in 2013 allowed for the development of a life-cycle assessment utilizing the product category rules for North American Structural and Architectural Wood Products so that the results from these analyses can be used for the development of environmental product declarations of glulam beams produced in the United States. Comparing the results of this study with the life-cycle assessment based on the 2000 survey data shows 30 percent reductions in global warming potential of glulam beams produced in both the PNW and the SE and reductions in the use of energy derived from fossil fuels by 40 percent in the PNW and SE. The overall net carbon sequestered in 1 m3 of PNW glulam is equivalent to 938 kg of CO2 and 1,038 kg of CO2 in the SE. Utilizing techniques that reduced the use of electricity and minimizing the transportation distances of the raw materials and resins to the mill could help to further reduce the carbon footprint of the glulam beam manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.