We derive a continuity equation for the evolution of the SU(2) Wigner function under nonlinear Kerr evolution. We give explicit expressions for the resulting quantum Wigner current, and discuss the appearance of the classical limit. We show that the global structure of the quantum current significantly differs from the classical one, which is clearly reflected in the form of the corresponding stagnation lines.
We present analytic expressions for the s-parametrized currents on the sphere for both unitary and dissipative evolutions. We examine the spatial distribution of the flow generated by these currents for quadratic Hamiltonians. The results are applied for the study of the quantum dissipative dynamics of the time-honored Kerr and Lipkin models, exploring the appearance of the semiclassical limit in stable, unstable and tunnelling regimes.
It is shown that transient spin-spin correlations in one-dimensional spin
S>>1 chain can be enhanced for initially factorized and individually squeezed
spin states. Such correlation transfer form "internal" to "external" degrees of
freedom can be well described by using a semiclassical phase-space approach.Comment: 5 pages, 5 fig
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.