Alzheimer’s disease (AD), considered the most common type of dementia, is characterized by a progressive loss of memory, visuospatial, language and complex cognitive abilities. In addition, patients often show comorbid depression and aggressiveness. Aging is the major factor contributing to AD; however, the initial cause that triggers the disease is yet unknown. Scientific evidence demonstrates that AD, especially the late onset of AD, is not the result of a single event, but rather it appears because of a combination of risk elements with the lack of protective ones. A major risk factor underlying the disease is neuroinflammation, which can be activated by different situations, including chronic pathogenic infections, prolonged stress and metabolic syndrome. Consequently, many therapeutic strategies against AD have been designed to reduce neuro-inflammation, with very promising results improving cognitive function in preclinical models of the disease. The literature is massive; thus, in this review we will revise the translational evidence of these early strategies focusing in anti-diabetic and anti-inflammatory molecules and discuss their therapeutic application in humans. Furthermore, we review the preclinical and clinical data of nutraceutical application against AD symptoms. Finally, we introduce new players underlying neuroinflammation in AD: the activity of the endocannabinoid system and the intestinal microbiota as neuroprotectors. This review highlights the importance of a broad multimodal approach to treat successfully the neuroinflammation underlying AD.
Inflammasomes are multiprotein complexes that represent critical elements of the inflammatory response. The dysregulation of the best-characterized complex, the NLRP3 inflammasome, has been linked to the pathogenesis of diseases such as multiple sclerosis, type 2 diabetes mellitus, Alzheimer’s disease, and cancer. While there exist molecular inhibitors specific for the various components of inflammasome complexes, no currently reported inhibitors specifically target NLRP3PYD homo-oligomerization. In the present study, we describe the identification of QM380 and QM381 as NLRP3PYD homo-oligomerization inhibitors after screening small molecules from the MyriaScreen library using a split-luciferase complementation assay. Our results demonstrate that these NLRP3PYD inhibitors interfere with ASC speck formation, inhibit pro-inflammatory cytokine IL1-β release, and decrease pyroptotic cell death. We employed spectroscopic techniques and computational docking analyses with QM380 and QM381 and the PYD domain to confirm the experimental results and predict possible mechanisms underlying the inhibition of NLRP3PYD homo-interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.