In recent years, the improvement of wireless protocols, the development of cloud services and the lower cost of hardware have started a new era for smart homes. One such enabling technologies is fog computing, which extends cloud computing to the edge of a network allowing for developing novel Internet of Things (IoT) applications and services. Under the IoT fog computing paradigm, IoT gateways are usually utilized to exchange messages with IoT nodes and a cloud. WiFi and ZigBee stand out as preferred communication technologies for smart homes. WiFi has become very popular, but it has a limited application due to its high energy consumption and the lack of standard mesh networking capabilities for low-power devices. For such reasons, ZigBee was selected by many manufacturers for developing wireless home automation devices. As a consequence, these technologies may coexist in the 2.4 GHz band, which leads to collisions, lower speed rates and increased communications latencies. This article presents ZiWi, a distributed fog computing Home Automation System (HAS) that allows for carrying out seamless communications among ZigBee and WiFi devices. This approach diverges from traditional home automation systems, which often rely on expensive central controllers. In addition, to ease the platform’s building process, whenever possible, the system makes use of open-source software (all the code of the nodes is available on GitHub) and Commercial Off-The-Shelf (COTS) hardware. The initial results, which were obtained in a number of representative home scenarios, show that the developed fog services respond several times faster than the evaluated cloud services, and that cross-interference has to be taken seriously to prevent collisions. In addition, the current consumption of ZiWi’s nodes was measured, showing the impact of encryption mechanisms.
Industry 4.0 has paved the way for a world where smart factories will automate and upgrade many processes through the use of some of the latest emerging technologies. One of such technologies is Unmanned Aerial Vehicles (UAVs), which have evolved a great deal in the last years in terms of technology (e.g., control units, sensors, UAV frames) and have significantly reduced their cost. UAVs can help industry in automatable and tedious tasks, like the ones performed on a regular basis for determining the inventory and for preserving item traceability. In such tasks, especially when it comes from untrusted third parties, it is essential to determine whether the collected information is valid or true. Likewise, ensuring data trustworthiness is a key issue in order to leverage Big Data analytics to supply chain efficiency and effectiveness. In such a case, blockchain, another Industry 4.0 technology that has become very popular in other fields like finance, has the potential to provide a higher level of transparency, security, trust and efficiency in the supply chain and enable the use of smart contracts. Thus, in this paper, we present the design and evaluation of a UAV-based system aimed at automating inventory tasks and keeping the traceability of industrial items attached to Radio-Frequency IDentification (RFID) tags. To confront current shortcomings, such a system is developed under a versatile, modular and scalable architecture aimed to reinforce cyber security and decentralization while fostering external audits and big data analytics. Therefore, the system uses a blockchain and a distributed ledger to store certain inventory data collected by UAVs, validate them, ensure their trustworthiness and make them available to the interested parties. In order to show the performance of the proposed system, different tests were performed in a real industrial warehouse, concluding that the system is able to obtain the inventory data really fast in comparison to traditional manual tasks, while being also able to estimate the position of the items when hovering over them thanks to their tag’s signal strength. In addition, the performance of the proposed blockchain-based architecture was evaluated in different scenarios.
Diabetes patients suffer from abnormal blood glucose levels, which can cause diverse health disorders that affect their kidneys, heart and vision. Due to these conditions, diabetes patients have traditionally checked blood glucose levels through Self-Monitoring of Blood Glucose (SMBG) techniques, like pricking their fingers multiple times per day. Such techniques involve a number of drawbacks that can be solved by using a device called Continuous Glucose Monitor (CGM), which can measure blood glucose levels continuously throughout the day without having to prick the patient when carrying out every measurement. This article details the design and implementation of a system that enhances commercial CGMs by adding Internet of Things (IoT) capabilities to them that allow for monitoring patients remotely and, thus, warning them about potentially dangerous situations. The proposed system makes use of smartphones to collect blood glucose values from CGMs and then sends them either to a remote cloud or to distributed fog computing nodes. Moreover, in order to exchange reliable, trustworthy and cybersecure data with medical scientists, doctors and caretakers, the system includes the deployment of a decentralized storage system that receives, processes and stores the collected data. Furthermore, in order to motivate users to add new data to the system, an incentive system based on a digital cryptocurrency named GlucoCoin was devised. Such a system makes use of a blockchain that is able to execute smart contracts in order to automate CGM sensor purchases or to reward the users that contribute to the system by providing their own data. Thanks to all the previously mentioned technologies, the proposed system enables patient data crowdsourcing and the development of novel mobile health (mHealth) applications for diagnosing, monitoring, studying and taking public health actions that can help to advance in the control of the disease and raise global awareness on the increasing prevalence of diabetes.
Climate change is driving new solutions to manage water more efficiently. Such solutions involve the development of smart irrigation systems where Internet of Things (IoT) nodes are deployed throughout large areas. In addition, in the mentioned areas, wireless communications can be difficult due to the presence of obstacles and metallic objects that block electromagnetic wave propagation totally or partially. This article details the development of a smart irrigation system able to cover large urban areas thanks to the use of Low-Power Wide-Area Network (LPWAN) sensor nodes based on LoRa and LoRaWAN. IoT nodes collect soil temperature/moisture and air temperature data, and control water supply autonomously, either by making use of fog computing gateways or by relying on remote commands sent from a cloud. Since the selection of IoT node and gateway locations is essential to have good connectivity and to reduce energy consumption, this article uses an in-house 3D-ray launching radio-planning tool to determine the best locations in real scenarios. Specifically, this paper provides details on the modeling of a university campus, which includes elements like buildings, roads, green areas, or vehicles. In such a scenario, simulations and empirical measurements were performed for two different testbeds: a LoRaWAN testbed that operates at 868 MHz and a testbed based on LoRa with 433 MHz transceivers. All the measurements agree with the simulation results, showing the impact of shadowing effects and material features (e.g., permittivity, conductivity) in the electromagnetic propagation of near-ground and underground LoRaWAN communications. Higher RF power levels are observed for 433 MHz due to the higher transmitted power level and the lower radio propagation losses, and even in the worst gateway location, the received power level is higher than the sensitivity threshold (−148 dBm). Regarding water consumption, the provided estimations indicate that the proposed smart irrigation system is able to reduce roughly 23% of the amount of used water just by considering weather forecasts. The obtained results provide useful guidelines for future smart irrigation developers and show the radio planning tool accuracy, which allows for optimizing the sensor network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.
The traditional process of finding a vacant parking slot is often inefficient: it increases driving time, traffic congestion, fuel consumption and exhaust emissions. To address such problems, smart parking systems have been proposed to help drivers to find available parking slots faster using latest sensing and communications technologies. However, the deployment of the communications infrastructure of a smart parking is not straightforward due to multiple factors that may affect wireless propagation. Moreover, a smart parking system needs to provide not only accurate information on available spots, but also fast responses while guaranteeing the system availability even in the case of lacking connectivity. This article describes the development of a decentralized low-latency smart parking system: from its conception, design and theoretical simulation, to its empirical validation. Thus, this work first characterizes a real-world scenario and proposes a fog computing and Internet of Things (IoT) based communications architecture to provide smart parking services. Next, a thorough analysis on the wireless channel properties is carried out by means of an in-house developed deterministic 3D-Ray Launching (3D-RL) tool. The obtained results are validated through a real-world measurement campaign and then the communications architecture is implemented by using ZigBee sensor nodes. The implemented architecture also makes use of Bluetooth Low Energy beacons, an Android app, a decentralized database and fog computing gateways, whose performance is evaluated in terms of response latency and processing rate. Results show that the proposed system is able to deliver information to the drivers fast, with no need for relying on remote servers. As a consequence, the presented development methodology and communications evaluation tool can be useful for future smart parking developers, which can determine the optimal locations of the wireless transceivers during the simulation stage and then deploy a system that can provide fast responses and decentralized services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.