Physical manifestations of linguistic units include sources of variability due to factors of speech production which are by definition excluded from counts of linguistic symbols. In this work, we examine whether linguistic laws hold with respect to the physical manifestations of linguistic units in spoken English. The data we analyse come from a phonetically transcribed database of acoustic recordings of spontaneous speech known as the Buckeye Speech corpus. First, we verify with unprecedented accuracy that acoustically transcribed durations of linguistic units at several scales comply with a lognormal distribution, and we quantitatively justify this ‘lognormality law’ using a stochastic generative model. Second, we explore the four classical linguistic laws (Zipf’s Law, Herdan’s Law, Brevity Law and Menzerath–Altmann’s Law (MAL)) in oral communication, both in physical units and in symbolic units measured in the speech transcriptions, and find that the validity of these laws is typically stronger when using physical units than in their symbolic counterpart. Additional results include (i) coining a Herdan’s Law in physical units, (ii) a precise mathematical formulation of Brevity Law, which we show to be connected to optimal compression principles in information theory and allows to formulate and validate yet another law which we call the size-rank law or (iii) a mathematical derivation of MAL which also highlights an additional regime where the law is inverted. Altogether, these results support the hypothesis that statistical laws in language have a physical origin.
In this work we consider Glissando Corpus—an oral corpus of Catalan and Spanish—and empirically analyze the presence of the four classical linguistic laws (Zipf’s law, Herdan’s law, Brevity law, and Menzerath–Altmann’s law) in oral communication, and further complement this with the analysis of two recently formulated laws: lognormality law and size-rank law. By aligning the acoustic signal of speech production with the speech transcriptions, we are able to measure and compare the agreement of each of these laws when measured in both physical and symbolic units. Our results show that these six laws are recovered in both languages but considerably more emphatically so when these are examined in physical units, hence reinforcing the so-called ‘physical hypothesis’ according to which linguistic laws might indeed have a physical origin and the patterns recovered in written texts would, therefore, be just a byproduct of the regularities already present in the acoustic signals of oral communication.
Linguistic laws constitute one of the quantitative cornerstones of modern cognitive sciences and have been routinely investigated in written corpora, or in the equivalent transcription of oral corpora. This means that inferences of statistical patterns of language in acoustics are biased by the arbitrary, language-dependent segmentation of the signal, and virtually precludes the possibility of making comparative studies between human voice and other animal communication systems. Here we bridge this gap by proposing a method that allows to measure such patterns in acoustic signals of arbitrary origin, without needs to have access to the language corpus underneath. The method has been applied to sixteen different human languages, recovering successfully some well-known laws of human communication at timescales even below the phoneme and finding yet another link between complexity and criticality in a biological system. These methods further pave the way for new comparative studies in animal communication or the analysis of signals of unknown code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.