Ring-annelated corannulenes behave as better C60/C70 receptor than corannulene C20H10. The interaction is dominated by dispersion, with CH⋯π interactions playing a very important role.
The ability of the carbon nanoring [11]cycloparaphenylene ([11]CPP) for coordinating fullerenes has been tested using a series of hosts, including the pristine fullerenes C60, C70, C76 and C78, the clusterfullerene Sc3N@C80, monometallic endofullerenes Y@C82 and Tm@C82, and dimetallic endofullerenes Y2@C82 and Lu2@C82. A systematic theoretical study employing dispersion corrected density functional methods has been carried out in order to explore the characteristics of the complexes and the strength of the interaction. Depending on the dimer, complexation energies span from around -36 kcal mol-1 with C60 to -53 kcal mol-1 with the C82 derivatives. Dispersion is the main stabilizing contribution in these dimers, so the molecules arrange to maximize the number of close interatomic contacts. Since most fullerenes can properly fill the cavity of the nanoring the stability of the complexes is pretty similar, with the exception of the smallest fullerenes. The complexes with endohedral fullerenes show similar stabilities in all cases studied, with no noticeable dependence on the nature of the endohedral species. The results obtained suggest that fullerenes larger than C76 could be selectively encapsulated by [11]CPP compared to smaller fullerenes.
A series of buckybowls with different sizes and structures have been tested as potential receptors of fullerenes C60, C70 and C40. Among these bowls are corannulene (C20H10), sumanene (C21H12), pinakene (C28H14), hemifullerene (C30H12), circumtrindene (C36H12), pentaindenocorannulene (C50H20) and bowl-shaped hexabenzocoronene derivatives. An exhaustive study, taking into account different orientations of fullerenes, was performed in order to obtain the most favourable arrangement for interacting with the bowls. Complexes were optimised at the SCC-DFTB-D level and interaction energies were obtained at the B97-D2/TZVP level including BSSE corrections. Comparison with the full B97-D2/TZVP results (optimisation plus interaction energies) suggests that the B97-D2/TZVP//SCC-DFTB-D approach may be a useful screening tool for designing fullerene receptors. Regarding the "catching" ability of the different buckybowls, it can be concluded that the shape of a buckybowl plays a crucial role in its success. Thus, it seems that the addition of flaps at the bowl rim by benzannelation is an effective strategy for enhancing the interaction with fullerenes, providing enough flexibility to extend the contact surface with the fullerene moiety. Accordingly, a bowl-shaped hexabenzocoronene derivative (C72H24) showed the best ability among the buckybowls evaluated for catching the fullerenes C60, C70 and C40; it is noteworthy that, when interacting with C60, the interaction energy is three times that corresponding to the prototypical buckybowl, corannulene. On the contrary, the more rigid and compact is the structure of a buckybowl, the smaller its ability to interact with fullerenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.