The goal of this research is to attain a smart control algorithm that can be used in a lighting system based on the activities of a building's occupants, using the neutral network model method. The study case of this research is the activities inside the Asrama Mahasiswa Kinanti UGM building. Control algorithm was built based on qualitative data from the occupants of the building, which were more or less the daily activities of the occupants. The results of the qualitative data will be essential in choosing a sensor and its placement. Several scenarios of activities represented by the combination of sensors' outputs are used as the control system input. The optimum illumination of the lighting system for these scenarios was produced through simulation using DIALux. An artificial neural network model was then developed and used as the smart control algorithm. Input for the neural network is the combination of sensor output and illumination output for each scenarios, given the simulation results. Based on the qualitative data acquired through a survey of the occupants' activities, the design of the lighting control system requires a system that uses occupancy sensors, weight sensors, photoelectric sensors, and photo sensors. The various positions and activities being done by the occupants are represented by the sensors output. A manual remote will be used to adjust the sensors regarding details that cannot be specifically detected. Ongoing specific activities inside the inhabited room gives off a system output. This scenario portrays the lighting conditions of the room, which includes the number of lights that are turned on or turned off. A smart control algorithm was developed using the backpropagation neural network model with 10 neuron inputs, the first hidden layer with 20 neurons, second hidden layer with 20 neurons, whilst the output layer has 5 neurons. The activated function for the first hidden layer is tan-sigmoid, for the second hidden layer is log-sigmoid, and the output layer is using pure linear. The training function uses trainlm. The MSE system's value is 2.72 x 10-8 with a larger R total value, which is 0.99892.
Prinsip utama dalam keberlanjutan adalah tercapainya perbaikan kualitas hidup manusia melalui perbaikan sosial, ekonomi dan lingkungan. Prinsip tersebut dapat diimplementasikan pada berbagai macam bangunan. Salah satunya adalah Pasar ’X’ di Semarang yang mempunyai nilai cagar budaya. Implementasi tersebut dapat diperlihatkan pada penggunaan material dalam penanganan bangunan cagar budaya pasca kebakaran. Bangunan pasca kebakaran yang dialami oleh Pasar ‘X’ merupakan pusat perekonomian bagi masyarakat di Semarang. Pada sisi yang lain, ada nilai kecagarbudayaan yang harus dideliver di dalam perbaikan bangunan pasca kebakaran sehingga dapat terjaga keberlanjutannya namun tetap memenuhi kaidah strukturnya. Oleh karena itu, diperlukan pemodelan untuk mencapai tujuan penelitian ini melalui perbandingan perbaikan struktur pasca kebakaran. Komponen struktur yang diteliti adalah kolom. Standar yang digunakan dalam memodelkan kedua macam perbaikan tersebut adalah ACI 440.2R-08 untuk FRP dan IS 15988 (2013) untuk concrete jacketing. Data yang diperlukan untuk memodelkan kedua macam perbaikan tersebut adalah hasil uji kuat tekan beton yang diperoleh dengan core drill dan uji kuat tarik baja tulangan dari kondisi eksisting. Selanjutnya, dimodelkan dengan menggunakan bantuan software ETABS. Hasil penelitian menunjukkan bahwa diperlukan FRP sebanyak 6 lapis tipe FRC 530 untuk kolom podium dan 3 lapis tipe FRC 530 untuk kolom tinggi terhadap kapasitas beban aksial nominal dan kapasitas momen nominal. Perbaikan dengan concrete jacketing diperlukan beton setebal 10 cm dengan tulangan utama 8 D16 mm serta dengan tulangan sengkang Æ8-75 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.