Plants under attack by arthropod herbivores often emit volatile compounds from their leaves that attract natural enemies of the herbivores. Here we report the first identification of an insect-induced belowground plant signal, (E )-b-caryophyllene, which strongly attracts an entomopathogenic nematode. Maize roots release this sesquiterpene in response to feeding by larvae of the beetle Diabrotica virgifera virgifera, a maize pest that is currently invading Europe. Most North American maize lines do not release (E )-b-caryophyllene, whereas European lines and the wild maize ancestor, teosinte, readily do so in response to D. v. virgifera attack. This difference was consistent with striking differences in the attractiveness of representative lines in the laboratory. Field experiments showed a fivefold higher nematode infection rate of D. v. virgifera larvae on a maize variety that produces the signal than on a variety that does not, whereas spiking the soil near the latter variety with authentic (E)-b-caryophyllene decreased the emergence of adult D. v. virgifera to less than half. North American maize lines must have lost the signal during the breeding process. Development of new varieties that release the attractant in adequate amounts should help enhance the efficacy of nematodes as biological control agents against root pests like D. v. virgifera.Plants are not simply passive victims of attacking herbivores; they have evolved an arsenal of physical and chemical defences to protect themselves. Often these defences are mobilized only in response to herbivory 1,2 . Among the proposed inducible defences is the production and release of volatile chemicals that could serve as signals to attract natural enemies of the herbivores [3][4][5] . Manipulating these signals can help increase the effectiveness of these natural enemies as control agents [6][7][8] . The induced emission of chemical signals is not limited solely to aboveground plant parts. The entomopathogenic nematode Heterorhabditis megidis was found to be attracted to exudates emitted by plant roots after damage by weevil larvae 9,10 , but the nature of the attractants involved is unknown. Here we show that maize roots damaged by larvae of the economically important coleopteran pest Diabrotica virgifera virgifera LeConte are attractive to entomopathogenic nematodes, and we identify the chemical compound responsible for the attraction. D. v. virgifera or Western corn rootworm (WCR) is a voracious pest of maize that is responsible for the use of the bulk of pesticides applied in the cultivation of this crop in the USA 11 . The recent introduction and rapid spread of WCR into Europe has caused major concern for maize production on this continent and has stimulated the search for new methods of maize protection 12,13 . The use of nematodes to control WCR is an ecologically sound option 14,15 , especially if researchers can optimize their efficacy at finding and killing WCR. Attraction of nematodes by WCR-damaged rootsTo determine whether or not WCR-infested maiz...
The sesquiterpene (E)-b-caryophyllene is emitted by maize (Zea mays) leaves in response to attack by lepidopteran larvae like Spodoptera littoralis and released from roots after damage by larvae of the coleopteran Diabrotica virgifera virgifera. We identified a maize terpene synthase, Terpene Synthase 23 (TPS23), that produces (E)-b-caryophyllene from farnesyl diphosphate. The expression of TPS23 is controlled at the transcript level and induced independently by D. v. virgifera damage in roots and S. littoralis damage in leaves. We demonstrate that (E)-b-caryophyllene can attract natural enemies of both herbivores: entomopathogenic nematodes below ground and parasitic wasps, after an initial learning experience, above ground. The biochemical properties of TPS23 are similar to those of (E)-b-caryophyllene synthases from dicotyledons but are the result of repeated evolution. The sequence of TPS23 is maintained by positive selection in maize and its closest wild relatives, teosinte (Zea sp) species. The gene encoding TPS23 is active in teosinte species and European maize lines, but decreased transcription in most North American lines resulted in the loss of (E)-b-caryophyllene production. We argue that the (E)-b-caryophyllene defense signal was lost during breeding of the North American lines and that its restoration might help to increase the resistance of these lines against agronomically important pests.
Fig. 2.Transformants releasing EC suffered less damage than control lines when EPNs were present. (A) Root damage measured on plants that had received neither WCR eggs nor nematodes was minimal, and there was no difference between transformed and nontransformed plants (n ϭ 5, P ϭ 0.87). (B) Root damage on plants that received only WCR eggs, but no nematodes, was substantial. Again, no significant difference was found between the transformed and nontransformed plants (n ϭ 5, P ϭ 0.18). (C) In plots that received WCR eggs and H. megidis, roots from transformed plants (pooled) had significantly less damage than roots from control lines (n ϭ 30, P ϭ 0.007). Approximately one-quarter of the transformed plants were found not to emit EC. Removing these plants from the statistical analysis did not significantly affect the results. The letters above the bars indicate significant differences within a graph. Error bars indicate standard errors.
Background Entomopathogenic nematodes (EPNs) are tiny parasitic worms that parasitize insects, in which they reproduce. Their foraging behavior has been subject to numerous studies, most of which have proposed that, at short distances, EPNs use chemicals that are emitted directly from the host as host location cues. Carbon dioxide (CO 2) in particular has been implicated as an important cue. Recent evidence shows that at longer distances several EPNs take advantage of volatiles that are specifically emitted by roots in response to insect attack. Studies that have revealed these plant-mediated interactions among three trophic levels have been met with some disbelief. Scope This review aims to take away this skepticism by summarizing the evidence for a role of root volatiles as foraging cues for EPNs. To reinforce our argument, we conducted olfactometer assays in which we directly compared the attraction of an EPN species to CO 2 and two typical inducible root volatiles. Conclusions The combination of the ubiquitous gas and a more specific root volatile was found to be considerably more attractive than one of the two alone. Hence, future studies on EPN foraging behavior should take into account that CO 2 and plant volatiles may work in synergy as attractants for EPNs. Recent research efforts also reveal prospects of exploiting plant-produced signals to improve the biological control of insect pests in the rhizosphere.
SUMMARYThe efficacy of natural enemies as biological control agents against insect pests can theoretically be enhanced by artificial selection for high responsiveness to foraging cues. The recent discovery that maize roots damaged by the western corn rootworm (WCR) emit a key attractant for insect-killing nematodes has opened the way to explore whether a selection strategy can improve the control of root pests. The compound in question, (E)--caryophyllene, is only weakly attractive to Heterorhabditis bacteriophora, one of the most infectious nematodes against WCR. To overcome this drawback, we used a six-arm below-ground olfactometer to select for a strain of H. bacteriophora that is more readily attracted to (E)--caryophyllene. After six generations of selection, the selected strain responded considerably better and moved twice as rapidly towards a (E)--caryophyllene source than the original strain. There was a minor trade-off between this enhanced responsiveness and nematode infectiveness. Yet, in subsequent field tests, the selected strain was significantly more effective than the original strain in reducing WCR populations in plots with a maize variety that releases (E)--caryophyllene, but not in plots with a maize variety that does not emit this root signal. These results illustrate the great potential of manipulating natural enemies of herbivores to improve biological pest control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.