Introduction Despite the limited evidence for its effectiveness, thermal screening at points of entry has increasingly become a standard protocol in numerous parts of the globe in response to the COVID-19 pandemic. We sought to determine the effectiveness of thermal screening as a key step in diagnosing COVID-19 in a resource-limited setting. Materials and methods This was a retrospective cross-sectional study based on a review of body temperature and Xpert Xpress SARS CoV-2 test results records for truck drivers entering Uganda through Mutukula between 15th May and 30th July 2020. All records missing information for body temperature, age, gender, and Xpert Xpress SARS CoV-2 status were excluded from the data set. A data set of 7,181 entries was used to compare thermal screening and Xpert Xpress SARS CoV-2 assay test results using the diagnostic statistical test in STATAv15 software. The prevalence of COVID-19 amongst the truck drivers based on Xpert Xpress SARS CoV-2 assay results was determined. The sensitivity, specificity, positive predictive value, negative predictive value, positive and negative Likelihood ratios were obtained using Xpert Xpress SARS CoV-2 assay as the gold standard. Results Based on our gold standard test, the proportion of persons that tested positive for COVID-19 was 6.7% (95% CI: 6.1–7.3). Of the 7,181 persons that were thermally screened, 6,844 (95.3%) were male. The sample median age was 38 years (interquartile range, IQR: 31–45 years). The median body temperature was 36.5°C (IQR: 36.3–36.7) and only n (1.2%) had a body temperature above 37.5°C. The sensitivity and specificity of thermal screening were 9.9% (95% CI: 7.4–13.0) and 99.5% (95% CI: 99.3–99.6) respectively. The positive and negative predictive values were 57.8 (95% CI: 46.5–68.6) and 93.9 (95% CI: 93.3–94.4) respectively. The positive and negative Likelihood Ratios (LRs) were 19 (95% CI: 12.4–29.1) and 0.9 (95% CI: 0.88–0.93) respectively. Conclusion In this study population, the use of Thermal screening alone is ineffective in the detection of potential COVID-19 cases at point of entry. We recommend a combination of screening tests or additional testing using highly sensitive molecular diagnostics such as Polymerase Chain Reaction.
Background Second-line drug resistance (SLD) among tuberculosis (TB) patients is a serious emerging challenge towards global control of the disease. We characterized SLD-resistance conferring-mutations among TB patients with rifampicin and/or isoniazid (RIF and/or INH) drug-resistance tested at the Uganda National TB Reference Laboratory (NTRL) between June 2017 and December 2019. Methods This was a descriptive cross-sectional secondary data analysis of 20,508 M. tuberculosis isolates of new and previously treated patients’ resistant to RIF and/or INH. DNA strips with valid results to characterise the SLD resistance using the commercial Line Probe Assay Genotype MTBDRsl Version 2.0 Assay (Hain Life Science, Nehren, Germany) were reviewed. Data were analysed with STATAv15 using cross-tabulation for frequency and proportions of known resistance-conferring mutations to injectable agents (IA) and fluoroquinolones (FQ). Results Among the eligible participants, 12,993/20,508 (63.4%) were male and median (IQR) age 32 (24–43). A total of 576/20,508 (2.8%) of the M. tuberculosis isolates from participants had resistance to RIF and/or INH. These included; 102/576 (17.7%) single drug-resistant and 474/576 (82.3%) multidrug-resistant (MDR) strains. Only 102 patients had test results for FQ of whom 70/102 (68.6%) and 01/102 (0.98%) had resistance-conferring mutations in the gyrA locus and gyrB locus respectively. Among patients with FQ resistance, gyrAD94G 42.6% (30.0–55.9) and gyrA A90V 41.1% (28.6–54.3) mutations were most observed. Only one mutation, E540D was detected in the gyrB locus. A total of 26 patients had resistance-conferring mutations to IA in whom, 20/26 77.0% (56.4–91.0) had A1401G mutation in the rrs gene locus. Conclusions Our study reveals a high proportion of mutations known to confer high-level fluoroquinolone drug-resistance among patients with rifampicin and/or isoniazid drug resistance. Utilizing routinely generated laboratory data from existing molecular diagnostic methods may aid real-time surveillance of emerging tuberculosis drug-resistance in resource-limited settings.
Introduction: The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that causes COVID-19 disease is a global challenge. Several countries have adopted testing, isolation, and tracing strategy towards the control of the COVID-19 pandemic, but access to rapid and accurate testing is still a global challenge. The conventional PCR – based assay is the most commonly used test yet it has huge costs, infrastructural, and procurement logistical challenges. The Xpert® Xpress SARS-CoV-2 test is an automated in – vitro diagnostic test for the qualitative detection of nucleic acid from SARS-CoV-2 within a turnaround time of 60 minutes on the widely used GeneXpert Dx Instrument Systems. Here we document the best practices and challenges encountered with the operationalization of Xpert® Xpress SARS-CoV-2 testing in a resource-limited setting.Materials and Methods: The Xpert® Xpress SARS-CoV-2 implementation followed an operational work plan that included; Laboratory COVID-19 policy and planning, situational analysis of the Laboratory network, country Xpert® Xpress SARS-CoV-2 assay verification, and rollout at Mutukula Port Health Laboratory. The Laboratory strategy was based on a set of six objectives; conducting infrastructural modifications, building a strong COVID-19 testing capacity, developing robust Laboratory Quality and Information Management Systems, establishing a Bio-risk management and Bio-banking capacity.Results: The Xpert® Xpress SARS-CoV-2 testing implementation team that was appointed by the Ministry of Health (Uganda) successfully established the Xpert® Xpress SARS-CoV-2 testing Laboratory at Mutukula border in Uganda. As of 9th July 2020, this Laboratory had tested a total of 10,990 samples with a median turnaround time of 75 (IQR: 60 – 75) minutes for samples of persons entering through Mutukula Land Point of Entry as compared to the median TAT 1980 minutes before it was established. The laboratory had only one discordant result out of 20 panels in the inter-laboratory comparison retesting program.Conclusions: Implementation of Xpert® Xpress SARS-CoV-2 testing for rapid diagnosis of COVID-19 is feasible and significantly reduces the long TAT observed with conventional RT-PCR based testing. The operationalization of the Xpert® Xpress SARS-CoV-2 testing is largely dependent on the initial planning, adequacy of resources, and preparedness within the laboratory network. Challenges include; the difference in approaches to COVID-19 response, the attitude of truck-drivers/persons on Infection Prevention and Control measures, language barrier, and waste management issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.