Urban sustainability initiatives often encompass such goals as increasing local food production, closing nutrient loops through recycling organic waste, and reducing water pollution. However, there are potential tradeoffs among these desired outcomes that may constrain progress. For example, expansion of urban agriculture for food production may create hotspots of nutrient pollution if nutrient recycling is inefficient. We used gardener and urban farmer survey data from the Twin Cities Metropolitan Area (Minnesota, USA) to characterize phosphorus (P) and nitrogen (N) inputs and harvest in order to determine nutrient use efficiencies, and measured soil P concentrations at a subset of these sites to test whether excess soil P was common. All survey respondents (n=142) reported using some form of soil amendment, with plant-based composts being the most common. Median application rates were 300 kg P/ha and 1400 kg N/ha. Median nutrient use efficiencies were low (2.5% for P, 5.0% for N) and there was only a weak positive relationship between P and N inputs and P and N harvested in crop biomass. Garden soils had a median Bray P value of 80 ppm, showing a buildup of plant-available P far exceeding recommended levels. Our results show that urban gardens are characterized by high nutrient inputs and inefficient conversion of these nutrients into crops, leading to buildup and potential loss of P and N from garden soils. Although urban gardens make up only 0.1% of land area in the Twin Cities, compost application to these urban gardens still constitutes one of the largest inputs of P to the watershed. In order to maximize desired outcomes from the expansion of urban agriculture (UA), it will be necessary to target soil amendments based on soil nutrient levels and crop nutrient demand.
As a result of extensive urban development coupled with warming temperatures, urban heat islands (UHI) have become an important factor affecting energy consumption and human health in cities. Prior research has shown that evapotranspiration (ET) from urban vegetation can have a significant cooling effect, but there are relatively few direct measurements from urban vegetable gardens. We compared hourly temperature measurements during two summers (2017 and 2018) in a 750 m 2 research garden at the University of St. Thomas (Saint Paul, Minnesota, USA) to hourly temperatures at the nearby Minneapolis-Saint Paul (MSP) International Airport, located 6 km to the south. We also quantified seasonal ET (June-October) in 132 garden plots and five reference turfgrass plots during the summers of 2017 and 2018. For both years, an increase in temperature of 1.00°C at the MSP airport resulted in an average increase of 0.55°C in the research garden. At temperatures greater than 22°C, the garden was cooler on average compared to MSP airport. ET in the garden plots was significantly higher than in the grass reference plots both years, with means of 46 cm for garden plots compared to 19 cm for grass plots in 2017, and 51 cm for garden plots compared to 33 cm for grass plots in 2018. These results are consistent with other research showing potentially large benefits of cooling through ET from urban gardens that are primarily aimed at crop production.
The composition of bioretention soil media (BSM) is among the most critical design attributes contributing to the water quality performance of bioretention systems, as various amendments may increase the capacity for chemical sorption of certain nutrient pollutants. We investigated the spent lime (a calcium-based water treatment residual) as BSM amendments for nutrient retention. The study was conducted in two parts: the first was a field-based mesocosm experiment in which we assessed the effect of spent lime amendments on leachate nutrient concentration for treatments receiving different levels of phosphorus and nitrogen loading (simulated by different levels of compost added to the substrate). The second was a laboratory study comparing various levels of spent lime and coir on leachate nutrient concentration at two different simulated loading rates. Effluent water was collected and analyzed for PO43−, NH4+ and NO3− concentrations in the field and lab. Spent lime significantly reduced leachate PO43− concentrations (upwards of 50%) in both the field and lab mesocosm studies compared to treatments without spent lime. Reductions in NH4+ concentrations were also observed due to spent lime but with variable significance across the different compost levels, whereas NO3− concentrations were higher in plots with spent lime than plots without spent lime. In the lab, columns with coir had significantly higher leachate PO43− concentrations compared to spent lime-treated columns, however, leachate NH4+ and NO3− concentrations did not significantly differ between treatments at the same compost levels. This study shows that spent lime, which is a waste product, is effective in significantly reducing leachate PO43− concentrations from BSM, while be a cost-effective substitute to engineered proprietary media that is expensive to acquire; however, future studies must also evaluate its potential for clogging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.