This paper investigates the possibility of integrating the combination of nanofillers, titanium dioxide (TiO2) and carbon nanotubes (CNT) into the thermoplastic polymer matrix. This combination of fillers can possibly modify the physico-chemical properties of composites compared to the pure polymer matrix. The composites were blended using the extrusion method. The composite filament produced was used to manufacture static mixers on a 3D printer using the additive manufacturing technology fused filament fabrication (FFF). The aim of this work was to inspect the influence of the filler addition on the thermal and mechanical properties of glycol-modified polyethylene terephthalate (PET-G) polymer composites. The fillers were added to the PET-G polymer matrix in several ratios. Tensile test results showed an increase in the overall strength and decrease in the elongation at break of the material. Melt flow rate (MFR) showed a decrease in the viscosity with the initial filler addition and reaching a plateau after 2 wt% filler was added. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed minor changes in the thermal properties. Scanning electron microscope (SEM) results showed homogenous distribution of the filler in the matrix and strong filler–matrix adhesion. The results indicate suitable properties of new functional composites for the 3D printing of static mixers for application in tubular reactors.
Antibiotics present common pollution in the environment, and they are often found in surface waters. Their presence or decomposition in water under natural sunlight can cause different unwanted consequences on the environment. In this paper, we report the application of 3D printed photocatalysts shaped as helix static mixers for tentative photocatalytic oxidation of antibiotic amoxicillin. The research was carried out in laboratory conditions in a semi-pilot-scale compound parabolic reactor (CPC) with static mixers made from PETG with TiO2 and MWCNT as fillers. The efficiency of 3D printed photocatalysts was evaluated in terms of amoxicillin decomposition kinetics using a pseudo-first-order kinetic model. The experimental results of amoxicillin decomposition and generated by-products were analyzed by using the Q-TOF LC/MS technique and presented using MassHunter Workstation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.