In geotechnical practice, it is often necessary to improve the properties of soil and rock in which different structures are built. For this purpose, spherical cavity blasting can be applied to expand the borehole. Such expansion may incorporate various constructive elements such as anchors and thus stabilize the slope. The paper presents the method for determining the increased volume, expansion, and deepening of the borehole as a result of spherical cavity blasting. In addition, mathematical models describing the dependency of the borehole expansion on the amount of explosive charge are presented. The models are mutually compared with the Akaike information criterion.
The characteristics and state of knowledge of bioelectric signals such as ECG, EEG, and EMG are initially discussed. This serves as the basis for exploration of the degree of scholastic coverage and understanding of the level of clinical acceptance of respective bioelectric signal subtypes during the last 60 or so years. The review further proceeds to discuss surface EMG (sEMG). The status of the field in terms of teaching and academic training related to sEMG is examined, and its clinical acceptance in several areas of medicine and kinesiology, including neurology, psychology, psychiatry, physiatry, physical medicine and rehabilitation, biomechanics and motor control, and gnathology, is evaluated. A realistic overview of the clinical utility of the measurement of sEMG signals and their interpretation and usage, as well as of perspectives on its development, are then provided. The main focus is on the state of the field in Croatia. EMG signals are viewed as "windows" into the function of the neuro-muscular system, a complex and hierarchically organized system that controls human body posture and gross body movement. New technical and technological means to enable the detection and measurement of these signals will contribute to increased clinical acceptance, provided current scientific, educational, and financial obstacles can be removed.
Surfactant liquid-membrane type sensors are usually made of a PVC, ionophore and a plasticizer. Plasticizers soften the PVC. Due to their lipophilicity, they influence the ion exchange across the membrane, ionophore solubility, membrane resistance and, consequently, the analytical signal. We used the DMI-TPB as an ionophore, six different plasticizers [2-nitrophenyl-octyl-ether (P1), bis(2-ethylhexyl) phthalate (P2), bis(2-ethylhexyl) sebacate (P3), 2-nitrophenyl phenyl ether (P4), dibutyl phthalate (P5) and dibutyl sebacate (P6)] and a PVC to produce ionic surfactant sensors. Sensor formulation with P1 showed the best potentiometric response to four usually used cationic surfactant, with the lowest LOD, 7 × 10−7 M; and potentiometric titration curves with well-defined and sharp inflexion points. The sensor with P6 showed the lowest analytical performances. Surfactant sensor with P1 was selected for quantification of cationic surfactant in model solutions and commercial samples of disinfectants and antiseptics. It showed high accuracy and precision in all determinations, with recovery from 98.2 to 99.6, and good agreement with the results obtained with surfactant sensor used as a referent one, and a standard two-phase titration method. RDS values were lower than 0.5% for all determinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.