The formation of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms drive diversity in organization? We use generative network modeling to provide a computational framework for understanding neurodevelopmental diversity. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over time. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity in neurodevelopment, capable of integrating different levels of analysis—from genes to cognition.
Fluid intelligence is the capacity to solve novel problems in the absence of task-specific knowledge and is highly predictive of outcomes like educational attainment and psychopathology. Here, we modeled the neurocognitive architecture of fluid intelligence in two cohorts: the Centre for Attention, Leaning and Memory sample (CALM) (N = 551, aged 5–17 years) and the Enhanced Nathan Kline Institute—Rockland Sample (NKI-RS) (N = 335, aged 6–17 years). We used multivariate structural equation modeling to test a preregistered watershed model of fluid intelligence. This model predicts that white matter contributes to intermediate cognitive phenotypes, like working memory and processing speed, which, in turn, contribute to fluid intelligence. We found that this model performed well for both samples and explained large amounts of variance in fluid intelligence (R2CALM = 51.2%, R2NKI-RS = 78.3%). The relationship between cognitive abilities and white matter differed with age, showing a dip in strength around ages 7–12 years. This age effect may reflect a reorganization of the neurocognitive architecture around pre- and early puberty. Overall, these findings highlight that intelligence is part of a complex hierarchical system of partially independent effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.