Stretchable, wearable and highly sensitive strain sensors are vital to the development of health monitoring systems, smart robots and human machine interfaces. The recent sensor fabrication progress is respectable, but it is limited by complexity, low sensitivity and short service life. Herein we present a facile, cost-effective and scalable method for the development of high-performance composite strain sensors and stretchable conductors based on a composite film consisting of graphene platelets (GnPs) and silicon rubber. Through calculation by the tunnelling theory using experimental data, the composite film has demonstrated ideal linear and reproducible sensitivity to tensile strains, which was contributed by the superior piezoresistivity of GnPs having tunable gauge factors 27.7 -164.5. The composite sensors fabricated in different days demonstrated pretty similar performance, enabling the application as a health-monitoring device to detect various human motions from finger bending to pulse. They can be used as an electronic skin, a vibration sensor, and a human-machine interface controller. Stretchable conductors were made by coating and encapsulating GnPs with polydimethyl siloxane to create a composite; this structure allows the conductor to be readily bent and stretched with sufficient mechanical robustness and cyclability.
We report the cloning, sequence analysis, tissue distribution, functional expression, and chromosomal localization of the human pancreatic sodium bicarbonate cotransport protein (pancreatic NBC (pNBC)). The transporter was identified by searching the human expressed sequence tag data base. An I.M.A.G.E. clone W39298 was identified, and a polymerase chain reaction probe was generated to screen a human pancreas cDNA library. pNBC encodes a 1079-residue polypeptide that differs at the N terminus from the recently cloned human sodium bicarbonate cotransporter isolated from kidney (kNBC) (Burnham, C. E., Amlal, H., Wang, Z., Shull, G. E., and Soleimani, M. (1997) J. Biol. Chem. 272, 19111-19114). Northern blot analysis using a probe specific for the N terminus of pNBC revealed an ϳ7.7-kilobase transcript expressed predominantly in pancreas, with less expression in kidney, brain, liver, prostate, colon, stomach, thyroid, and spinal chord. In contrast, a probe to the unique 5 region of kNBC detected an ϳ7.6-kilobase transcript only in the kidney. In situ hybridization studies in pancreas revealed expression in the acini and ductal cells. The gene was mapped to chromosome 4q21 using fluorescent in situ hybridization. Expression of pNBC in Xenopus laevis oocytes induced sodium bicarbonate cotransport. These data demonstrate that pNBC encodes the sodium bicarbonate cotransporter in the mammalian pancreas. pNBC is also expressed at a lower level in several other organs, whereas kNBC is expressed uniquely in kidney.
In grating-based x-ray phase sensitive imaging, dark-field contrast refers to the extinction of the interference fringes due to small-angle scattering. For configurations where the sample is placed before the beamsplitter grating, the dark-field contrast has been quantified with theoretical wave propagation models. Yet when the grating is placed before the sample, the dark-field contrast has only been modeled in the geometric optics regime. Here we attempt to quantify the dark-field effect in the grating-before-sample geometry with first-principle wave calculations and understand the associated particle-size selectivity. We obtain an expression for the dark-field effect in terms of the sample material’s complex refractive index, which can be verified experimentally without fitting parameters. A dark-field computed tomography experiment shows that the particle-size selectivity can be used to differentiate materials of identical x-ray absorption.
SummarySynchrotron-generated X-rays provide scientists with a multitude of investigative techniques well suited for the analysis of the composition and structure of all types of materials and specimens. Here, we describe the properties of synchrotron-generated X-rays and the advantages that they provide for qualitative morphological research of millimetresized biological organisms and biomaterials. Case studies of the anatomy of insect heads, of whole microarthropods and of the three-dimensional reconstruction of the cuticular tendons of jumping beetles, all performed at the beamline ID19 of the European Synchrotron Radiation Facility (ESRF), are presented to illustrate the techniques of phasecontrast tomography available for anatomical and structural investigations. Various sample preparation techniques are described and compared and experimental settings that we have found to be particularly successful are given. On comparing the strengths and weaknesses of the technique with traditional histological thin sectioning, we conclude that Correspondence to: Oliver Betz. Tel: +0049 (0) 7071 2972995; e-mail: oliver. betz@uni-tuebingen.de synchrotron radiation microtomography has a great potential in biological microanatomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.