Dry-cured ham is a high-quality product owing to its organoleptic characteristics. Sensory analysis is an essential part of assessing its quality. However, sensory assessment is a laborious process which implies the availability of a trained tasting panel. The aim of this study was the prediction of dry-ham sensory characteristics by means of an instrumental technique. To do so, an artificial neural network (ANN) model for the prediction of sensory parameters of dry-cured hams based on NIR spectral information was developed and optimized. The NIR spectra were obtained with a fiber-optic probe applied directly to the ham sample. In order to achieve this objective, the neural network was designed using 28 sensory parameters analyzed by a trained panel for sensory profile analysis as output data. A total of 91 samples of dry-cured ham matured for 24 months were analyzed. The hams corresponded to two different breeds (Iberian and Iberian x Duroc) and two different feeding systems (feeding outdoors with acorns or feeding with concentrates). The training algorithm and ANN architecture (the number of neurons in the hidden layer) used for the training were optimized. The parameters of ANN architecture analyzed have been shown to have an effect on the prediction capacity of the network. The Levenberg–Marquardt training algorithm has been shown to be the most suitable for the application of an ANN to sensory parameters
For Protected Geographical Indication (PGI)-labeled products, such as the dry-cured beef meat “cecina de León”, a sensory analysis is compulsory. However, this is a complex and time-consuming process. This study explores the viability of using near infrared spectroscopy (NIRS) together with artificial neural networks (ANN) for predicting sensory attributes. Spectra of 50 samples of cecina were recorded and 451 reflectance data were obtained. A feedforward multilayer perceptron ANN with 451 neurons in the input layer, a number of neurons varying between 1 and 30 in the hidden layer, and a single neuron in the output layer were optimized for each sensory parameter. The regression coefficient R squared (RSQ > 0.8 except for odor intensity) and mean squared error of prediction (MSEP) values obtained when comparing predicted and reference values showed that it is possible to predict accurately 23 out of 24 sensory parameters. Although only 3 sensory parameters showed significant differences between PGI and non-PGI samples, the optimized ANN architecture applied to NIR spectra achieved the correct classification of the 100% of the samples while the residual mean squares method (RMS-X) allowed 100% of non-PGI samples to be distinguished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.