It is demonstrated that the Pais-Uhlenbeck oscillator in arbitrary dimension enjoys the l-conformal Newton-Hooke symmetry provided frequencies of oscillation form the arithmetic sequence ω k = (2k − 1)ω 1 , where k = 1, . . . , n, and l is the half-integer 2n−1 2 . The model is shown to be maximally superintegrable. A link to n decoupled isotropic oscillators is discussed and an interplay between the l-conformal Newton-Hooke symmetry and symmetries characterizing each individual isotropic oscillator is analyzed.
The method of nonlinear realizations is applied to the l-conformal Galilei algebra to construct a dynamical system without higher derivative terms in the equations of motion. A configuration space of the model involves coordinates, which parametrize particles in d spatial dimensions, and a conformal mode, which gives rise to an effective external field. It is shown that trajectories of the system can be mapped into those of a set of decoupled oscillators in d dimensions.
The l-conformal extension of the Newton-Hooke algebra proposed in [J. Math. Phys. 38 (1997) 3810] is formulated in the basis in which the flat space limit is unambiguous. Admissible central charges are specified. The infinite-dimensional Virasoro-KacMoody type extension is given.
The method of nonlinear realizations and the technique previously developed in [Nucl. Phys. B 866 (2013) 212] are used to construct a dynamical system without higher derivative terms, which holds invariant under the l-conformal Newton-Hooke group. A configuration space of the model involves coordinates, which parametrize a particle moving in d spatial dimensions and a conformal mode, which gives rise to an effective external field. The dynamical system describes a generalized multi-dimensional oscillator, which undergoes accelerated/decelerated motion in an ellipse in accord with evolution of the conformal mode. Higher derivative formulations are discussed as well. It is demonstrated that the multi-dimensional Pais-Uhlenbeck oscillator enjoys the l = 3 2 -conformal Newton-Hooke symmetry for a particular choice of its frequencies.
N = 2 supersymmetric extension of the l-conformal Galilei algebra is constructed. A relation between its representations in flat spacetime and in Newton-Hooke spacetime is discussed. An infinite-dimensional generalization of the superalgebra is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.