Despite global commitments to achieving gender equality and improving health and well-being for all, quantitative data and methods to precisely estimate the effect of gender norms on health inequities are underdeveloped. Nonetheless, existing global, national, and sub-national data provide key opportunities for testing associations between gender norms and health. Using innovative approaches to analysing proxies for gender norms, we generated evidence that gender norms impact the health of women and men across life stages, health sectors, and world regions. Six case studies demonstrated that: 1) gender norms are complex and may intersect with other social factors to impact health over the life course; 2) early gender-normative influences by parents and peers may have multiple and differing health consequences for girls and boys; 3) non-conformity with, and transgression of, gender norms may be harmful to health, in particular when they trigger negative sanctions; and 4) the impact of gender norms on health can be context-specific, demanding care when designing effective gender-transformative health policies and programs. Limitations of survey-based data are described that resulted in missed opportunities for exploring certain populations and domains. Recommendations for optimising and advancing research on the health impacts of gender norms are made.
IMPORTANCE Many genetic variants are associated with body mass index (BMI). Associations may have changed with the 20th century obesity epidemic and may differ for black vs white individuals. OBJECTIVE Using birth cohort as an indicator for exposure to obesogenic environment, to evaluate whether genetic predisposition to higher BMI has a larger magnitude of association among adults from more recent birth cohorts, who were exposed to the obesity epidemic at younger ages. DESIGN, SETTING, AND PARTICIPANTS Observational study of 8788 adults in the US national Health and Retirement Study who were aged 50 years and older, born between 1900 and 1958, with as many as 12 BMI assessments from 1992 to 2014. EXPOSURES A multilocus genetic risk score for BMI (GRS-BMI), calculated as the weighted sum of alleles of 29 single nucleotide polymorphisms associated with BMI, with weights equal to the published per-allele effects. The GRS-BMI represents how much each person's BMI is expected to differ, based on genetic background (with respect to these 29 loci), from the BMI of a sample member with median genetic risk. The median-centered GRS-BMI ranged from −1.68 to 2.01. MAIN OUTCOMES AND MEASURES BMI based on self-reported height and weight. RESULTS GRS-BMI was significantly associated with BMI among white participants (n = 7482; mean age at first assessment, 59 years; 3373 [45%] were men; P <.001) and among black participants (n = 1306; mean age at first assessment, 57 years; 505 [39%] were men; P <.001) but accounted for 0.99% of variation in BMI among white participants and 1.37% among black participants. In multilevel models accounting for age, the magnitude of associations of GRS-BMI with BMI were larger for more recent birth cohorts. For example, among white participants, each unit higher GRS-BMI was associated with a difference in BMI of 1.37 (95% CI, 0.93 to 1.80) if born after 1943, and 0.17 (95% CI, −0.55 to 0.89) if born before 1924 (P = .006). For black participants, each unit higher GRS-BMI was associated with a difference in BMI of 3.70 (95% CI, 2.42 to 4.97) if born after 1943, and 1.44 (95% CI, −1.40 to 4.29) if born before 1924. CONCLUSIONS AND RELEVANCE For participants born between 1900 and 1958, the magnitude of association between BMI and a genetic risk score for BMI was larger among persons born in later cohorts. This suggests that associations of known genetic variants with BMI may be modified by obesogenic environments.
Longer lives and fertility far below the replacement level of 2.1 births per woman are leading to rapid population aging in many countries. Many observers are concerned that aging will adversely affect public finances and standards of living. Analysis of newly available National Transfer Accounts data for 40 countries shows that fertility well above replacement would typically be most beneficial for government budgets. However, fertility near replacement would be most beneficial for standards of living when the analysis includes the effects of age structure on families as well as governments. And fertility below replacement would maximize per capita consumption when the cost of providing capital for a growing labor force is taken into account. While low fertility will indeed challenge government programs and very low fertility undermines living standards, we find that moderately low fertility and population decline favor the broader material standard of living
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.