1 A hallmark for unstable bladder contractions is hyperexcitability and changes in the nature of spontaneous phasic activity of the bladder smooth muscle. In this study, we have characterized the spontaneous activity of the urinary bladder smooth muscle from the pig, a widely used model for studying human bladder function. 2 Our studies demonstrate that phasic activity of the pig detrusor is myogenic and is in¯uenced by the presence of urothelium. Denuded strips exhibit robust spontaneous activity measured as mean area under the contraction curve (AUC=188.9+15.63 mNs) compared to intact strips (AUC=7.3+1.94 mNs). 3 Spontaneous phasic activity, particularly the amplitude, is dependent on both calcium entry through voltage-dependent calcium channels and release from ryanodine receptors as shown by inhibition of spontaneous activity by nifedipine and ryanodine respectively. 4 Inhibition of BK Ca channels by iberiotoxin (100 nM) resulted in an increase in contraction amplitude (89.1+20.4%) and frequency (92.5+31.0%). The SK Ca channel blocker apamin (100 nM) also increased contraction amplitude (69.1+24.3%) and frequency (53.5+13.6%) demonstrating that these mechanisms are critical to the regulation of phasic spontaneous activity. 5 Inhibition of K ATP channels by glyburide (10 mM) did not signi®cantly alter myogenic contractions (AUC=18.5+12.3%). However, K ATP channel openers (KCOs) showed an exquisite sensitivity for suppression of spontaneous myogenic activity. KCOs were generally 15 fold more potent in suppressing spontaneous activity compared to contractions evoked by electrical ®eld-stimulation. These studies suggest that potassium channel modulation, particularly K ATP channels, may o er a unique mechanism for controlling spontaneous myogenic activity especially those associated with the hyperexcitability occurring in unstable bladders.
A new structural class of histamine H 4 receptor antagonists (6-14) was designed based on rotationally restricted 2,4-diaminopyrimidines. Series compounds showed potent and selective in vitro H 4 antagonism across multiple species, good CNS penetration, improved PK properties compared to reference H 4 antagonists, functional H 4 antagonism in cellular and in vivo pharmacological assays, and in vivo anti-inflammatory and antinociceptive efficacy. One compound, 10 (A-943931), combined the best features of the series in a single molecule and is an excellent tool compound to probe H 4 pharmacology. It is a potent H 4 antagonist in functional assays across species (FLIPR Ca (2+) flux, K b < 5.7 nM), has high (>190x) selectivity for H 4, and combines good PK in rats and mice (t 1/2 of 2.6 and 1.6 h, oral bioavailability of 37% and 90%) with anti-inflammatory activity (ED 50 = 37 micromol/kg, mouse) and efficacy in pain models (thermal hyperalgesia, ED 50 = 72 micromol/kg, rat).
A series of 2-aminopyrimidines was synthesized as ligands of the histamine H4 receptor (H4R). Working in part from a pyrimidine hit that was identified in an HTS campaign, SAR studies were carried out to optimize the potency, which led to compound 3, 4- tert-butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine. We further studied this compound by systematically modifying the core pyrimidine moiety, the methylpiperazine at position 4, the NH2 at position 2, and positions 5 and 6 of the pyrimidine ring. The pyrimidine 6 position benefited the most from this optimization, especially in analogs in which the 6- tert-butyl was replaced with aromatic and secondary amine moieties. The highlight of the optimization campaign was compound 4, 4-[2-amino-6-(4-methylpiperazin-1-yl)pyrimidin-4-yl]benzonitrile, which was potent in vitro and was active as an anti-inflammatory agent in an animal model and had antinociceptive activity in a pain model, which supports the potential of H 4R antagonists in pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.