TNF-α is conserved in all vertebrate classes and has been identified in all taxonomic groups of teleost fish. However, its biological activities and its role in infection are largely unknown. Using two complementary fish models, gilthead seabream and zebrafish, we report here that the main proinflammatory effects of fish TNF-α are mediated through the activation of endothelial cells. Thus, TNF-α promotes the expression of E-selectin and different CC and CXC chemokines in endothelial cells, thus explaining the recruitment and activation of phagocytes observed in vivo in both species. We also found that TLR ligands, and to some extent TNF-α, were able to increase the expression of MHC class II and CD83 in endothelial cells, which might suggest a role for fish endothelial cells and TNF-α in Ag presentation. Lastly, we found that TNF-α increases the susceptibility of the zebrafish to viral (spring viremia of carp virus) and bacterial (Streptococcus iniae) infections. Although the powerful actions of fish TNF-α on endothelial cells suggest that it might facilitate pathogen dissemination, it was found that TNF-α increased antiviral genes and, more importantly, had little effect on the viral load in early infection. In addition, the stimulation of ZF4 cells with TNF-α resulted in increased viral replication. Together, these results indicate that fish TNF-α displays different sorts of bioactivity to their mammalian counterparts and point to the complexity of the evolution that has taken place in the regulation of innate immunity by cytokines.
Mast cells are important as initiators and effectors of innate immunity and regulate the adaptive immune responses. They have been described in all classes of vertebrates and seem to be morphologically and functionally similar. However, early studies had shown that fish and amphibian mast cells were devoid of histamine. In this study, we take a fresh look at the evolution of histamine and find that the mast cells of fish belonging to the Perciformes order, the largest and most evolutionarily advanced order of teleosts, are armed with histamine. More importantly, histamine is biologically active in these fish where it is able to regulate the inflammatory response by acting on professional phagocytes. In addition, the actions of histamine in these immune cells seem to be mediated through the engagement of H 1 and H2 receptors, which, together with the H3 receptor, are well conserved in bony fish. We propose that the storage of histamine in vertebrate mast cells and its use as an inflammatory messenger was established in primitive reptiles (Lepidosauria) Ϸ276 million years ago. This same feature seems to have developed independently in Perciform fish much more recently in the Lower Eocene, between 55 and 45 million years ago, a short period during which the great majority of Percomorph families appeared.lung fish ͉ amphibians ͉ inflammation ͉ eosinophilic granule cells ͉ phylogeny
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.