Abstract-Device-to-device (D2D) communication will allow direct transmission between nearby mobile devices in the next generation cellular networks. A fundamental problem in multi-hop D2D networks is the design of forwarding algorithms that achieve, at the same time, high delivery ratio and low network overhead. In this work, we study group meetings' properties by looking at their structure and regularity with the goal of applying such knowledge in the design of a forwarding algorithm for D2D multi-hop networks. We introduce a forwarding protocol, namely GROUPS-NET, which is aware of social group meetings and their evolution over time. Our algorithm is parameter-calibration free and does not require any knowledge about the social network structure of the system. In particular, different from the state of the art algorithms, GROUPS-NET does not need communities' detection, which is a complex and expensive task. We validate our algorithm by using different publicly available data sources. In real-world large scale scenarios, our algorithm achieves approximately the same delivery ratio of the state-of-the-art solution with 40% less network overhead.
The consumer electronics industry is witnessing a surge in Internet of Things (IoT) devices, ranging from mundane artifacts to complex biosensors connected across disparate networks. As the demand for IoT devices grows, the need for stronger authentication and access control mechanisms is greater than ever. Legacy authentication and access control mechanisms do not meet the growing needs of IoT. In particular, there is a dire need for a holistic authentication mechanism throughout the IoT device life-cycle, namely from the manufacturing to the retirement of the device. As a plausible solution, we present Authentication of Things (AoT), a suite of protocols that incorporate authentication and access control during the entire IoT device life span. Primarily, AoT relies on Identity-and Attribute-Based Cryptography to cryptographically enforce Attribute-Based Access Control (ABAC). Additionally, AoT facilitates secure (in terms of stronger authentication) wireless interoperability of new and guest devices in a seamless manner. To validate our solution, we have developed AoT for Android smartphones like the LG G4 and evaluated all the cryptographic primitives over more constrained devices like the Intel Edison and the Arduino Due. This included the implementation of an Attribute-Based Signature (ABS) scheme. Our results indicate AoT ranges from highly efficient on resource-rich devices to affordable on resource-constrained IoT-like devices. Typically, an ABS generation takes around 27 ms on the LG G4, 282 ms on the Intel Edison, and 1.5 s on the Arduino Due.
Abstract-In the era of mobile computing, understanding human mobility patterns is crucial in order to better design protocols and applications. Many studies focus on different aspects of human mobility such as people's points of interests, routes, traffic, individual mobility patterns, among others. In this work, we propose to look at human mobility through a social perspective, i.e., analyze the impact of social groups in mobility patterns. We use the MIT Reality Mining proximity trace to detect, track and investigate group's evolution throughout time. Our results show that group meetings happen in a periodical fashion and present daily and weekly periodicity. We analyze how groups' dynamics change over day hours and find that group meetings lasting longer are those with less changes in members composition and with members having stronger social bonds with each other. Our findings can be used to propose meeting prediction algorithms, opportunistic routing and information diffusion protocols, taking advantage of those revealed properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.