The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes over 20,000 protein-coding genes, including orthologs of at least 1,700 human disease genes. Over a million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like other tetrapods, the genome contains gene deserts enriched for conserved non-coding elements. The genome exhibits remarkable shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.
With an increasing number of vertebrate genomes being sequenced in draft or finished form, unique opportunities for decoding the language of DNA sequence through comparative genome alignments have arisen. However, novel tools and strategies are required to accommodate this large volume of genomic information and to facilitate the transfer of predictions generated by comparative sequence alignment to researchers focused on experimental annotation of genome function. Here, we present the ECR Browser, a tool that provides easy and dynamic access to whole genome alignments of human, mouse, rat and fish sequences. This web-based tool (http://ecrbrowser.dcode.org) provides the starting point for discovery of novel genes, identification of distant gene regulatory elements and prediction of transcription factor binding sites. The genome alignment portal of the ECR Browser also permits fast and automated alignments of any user-submitted sequence to the genome of choice. The interconnection of the ECR Browser with other DNA sequence analysis tools creates a unique portal for studying and exploring vertebrate genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.