Polyetheretherketone (PEEK) is a polyaromatic semi-crystalline thermoplastic polymer with mechanical properties favorable for bio-medical applications. Polyetheretherketone forms: PEEK-LT1, PEEK-LT2, and PEEK-LT3 have already been applied in different surgical fields: spine surgery, orthopedic surgery, maxillo-facial surgery etc. Synthesis of PEEK composites broadens the physicochemical and mechanical properties of PEEK materials. To improve their osteoinductive and antimicrobial capabilities, different types of functionalization of PEEK surfaces and changes in PEEK structure were proposed. PEEK based materials are becoming an important group of biomaterials used for bone and cartilage replacement as well as in a large number of diverse medical fields. The current paper describes the structural changes and the surface functionalization of PEEK materials and their most common biomedical applications. The possibility to use these materials in 3D printing process could increase the scientific interest and their future development as well.
The goals of this trial were, first, to produce a Raman mapping of decay and sound dentin samples, through accurate analysis of the Raman band spectra variations of mineral and organic components. The second goal was to confirm the correlation between the Raman signal and the signal of a fluorescent camera, by assaying the concentration of pentosidine and natural collagen fluorescent crosslink using reverse phase high-pressure liquid chromatography. The first correlation assumed a possible relationship between the signal observed with the camera and Raman spectroscopy. The second correlation assumed an association with the Maillard reaction. Absence of a correlation for this trial was that no association could be found between Raman spectra characteristics, fluorescence variation and the HPLC assay. Our results void this absence.
Preservation of natural tooth structure requires early detection of the carious lesion and is associated with comprehensive patient dental care. Processes aiming to detect carious lesions in the initial stage with optimum efficiency employ a variety of technologies such as magnifying loupes, transillumination, light and laser fluorescence (QLF ® and DIAGNOdent ® ) and autofluorescence (Soprolife ® and VistaCam ® ), electric current/impedance (CarieScan ® ), tomographic imaging and image processing. Most fluorescent caries detection tools can discriminate between healthy and carious dental tissue, demonstrating different levels of sensitivity and specificity. Based on the fluorescence principle, an LED camera (Soprolife ® ) was developed (Sopro-Acteon, La Ciotat, France) which combined magnification, fluorescence, picture acquisition and an innovative therapeutic concept called light-induced fluorescence evaluator for diagnosis and treatment (LIFEDT). This article is rounded off by a Soprolife ® illustration about minimally or even non-invasive dental techniques, distinguishing those that preserve or reinforce the enamel and enamel-dentine structures without any preparation (MIT1-minimally invasive therapy 1) from those that require minimum preparation of the dental tissues (MIT2 -minimally invasive therapy 2) using several clinical cases as examples. MIT1 encompasses all the dental techniques aimed at disinfection, remineralizing, reversing and sealing the caries process and MIT2 involves a series of specific tools, including microburs, air abrasion devices, sonic and ultrasonic inserts and photo-activated disinfection to achieve minimal preparation of the tooth. With respect to minimally invasive treatment and prevention, the use of lasers is discussed. Furthermore, while most practices operate under a surgical model, Caries Management by Risk Assessment (CaMBRA) encourages a medical model of disease prevention and management to control the manifestation of the disease, or keep the oral environment in a state of balance between pathological and preventive factors. Early detection and diagnosis and prediction of lesion activity are of great interest and may change traditional operative procedures substantially. Fluorescence tools with high levels of magnification and observational capacity should guide clinicians towards a more preventive and minimally invasive treatment strategy.
In regenerative medicine, stem-cell-based therapy often requires a scaffold to deliver cells and/or growth factors to the injured site. Porous silicon (pSi) is a promising biomaterial for tissue engineering as it is both nontoxic and bioresorbable. Moreover, surface modification can offer control over the degradation rate of pSi and can also promote cell adhesion. Dental pulp stem cells (DPSC) are pluripotent mesenchymal stem cells found within the teeth and constitute a readily source of stem cells. Thus, coupling the good proliferation and differentiation capacities of DPSC with the textural and chemical properties of the pSi substrates provides an interesting approach for therapeutic use. In this study, the behavior of human DPSC is analyzed on pSi substrates presenting pores of various sizes, 10 ± 2 nm, 36 ± 4 nm, and 1.0 ± 0.1 μm, and undergoing different chemical treatments, thermal oxidation, silanization with aminopropyltriethoxysilane (APTES), and hydrosilylation with undecenoic acid or semicarbazide. DPSC adhesion and proliferation were followed for up to 72 h by fluorescence microscopy, scanning electron microscopy (SEM), enzymatic activity assay, and BrdU assay for mitotic activity. Porous silicon with 36 nm pore size was found to offer the best adhesion and the fastest growth rate for DPSC compared to pSi comporting smaller pore size (10 nm) or larger pore size (1 μm), especially after silanization with APTES. Hydrosilylation with semicarbazide favored cell adhesion and proliferation, especially mitosis after cell adhesion, but such chemical modification has been found to led to a scaffold that is stable for only 24-48 h in culture medium. Thus, semicarbazide-treated pSi appeared to be an appropriate scaffold for stem cell adhesion and immediate in vivo transplantation, whereas APTES-treated pSi was found to be more suitable for long-term in vitro culture, for stem cell proliferation and differentiation.
Following the basis of tissue engineering (Cells-Scaffold-Bioactive molecules), regenerative endodontic has emerged as a new concept of dental treatment. Clinical procedures have been proposed by endodontic practitioners willing to promote regenerative therapy. Preserving pulp vitality was a first approach. Later procedures aimed to regenerate a vascularized pulp in necrotic root canals. However, there is still no protocol allowing an effective regeneration of necrotic pulp tissue either in immature or mature teeth. This review explores in vitro and preclinical concepts developed during the last decade, especially the potential use of stem cells, bioactive molecules, and scaffolds, and makes a comparison with the goals achieved so far in clinical practice. Regeneration of pulp-like tissue has been shown in various experimental conditions. However, the appropriate techniques are currently in a developmental stage. The ideal combination of scaffolds and growth factors to obtain a complete regeneration of the pulp-dentin complex is still unknown. The use of stem cells, especially from pulp origin, sounds promising for pulp regeneration therapy, but it has not been applied so far for clinical endodontics, in case of necrotic teeth. The gap observed between the hope raised from in vitro experiments and the reality of endodontic treatments suggests that clinical success may be achieved without external stem cell application. Therefore, procedures using the concept of cell homing, through evoked bleeding that permit to recreate a living tissue that mimics the original pulp has been proposed. Perspectives for pulp tissue engineering in the near future include a better control of clinical parameters and pragmatic approach of the experimental results (autologous stem cells from cell homing, controlled release of growth factors). In the coming years, this therapeutic strategy will probably become a clinical reality, even for mature necrotic teeth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.