Following the identification of Aedes (Ae.) aegypti in the Sochi area in Russia at the beginning of 2000, entomological surveys were conducted during the summers of 2007, 2011, and 2012, leading to the identification of Ae. albopictus and Ae. koreicus. These findings highlight Russia as being the only country in the World Health Organization European Region with a documented presence of both Ae. aegypti and Ae. albopictus mosquitoes. Both mosquito species are found on the coasts of the Black Sea. Control measures are needed to reduce the possible risks of importing exotic vector-borne infections, such as dengue and chikungunya.
Background: The incidence and area of arbovirus infections is increasing around the world. It is largely linked to the spread of the main arbovirus vectors, invasive mosquito of the genus Aedes. Previously, it has been reported that Aedes aegypti reemerged in Russia after a 50-year absence. Moreover, in 2011, Ae. albopictus was registered in the city of Sochi (South Russia, Black Sea coast) for the first time. In 2013, Asian Ae. koreicus was found in Sochi for the first time.
Methods: Mosquitoes were collected using the following methods: larvae with a dip net, imago on volunteers and using bait traps. The mosquitoes were identified using both morphology and sequencing of the second internal transcribed spacer of the nuclear ribosomal RNA gene cluster.
Results: In August 2016, Ae. koreicus larvae and imago and a single male of Ae. aegypti were found on the southern coast of the Crimean Peninsula, where they were not registered before. Newly obtained DNA sequences were registered in GenBank with the accession numbers MF072936 and MF072937.
Conclusion: Detection of invasive mosquito species (Ae. aegypti and Ae. koreicus) implies the possibility of their area expansion. Intensive surveillance is required at the Crimean Peninsula to evaluate the potential for the introduction of vector-borne diseases.
медицинской паразитологии, тропических и трансмиссивных заболеваний им. Е.И. Марциновского Первого Московского государственного медицинского университета им. И.М. Сеченова (Сеченовский университет) Министерства здравоохранения РФ,
Background
Asian tiger mosquito Aedes albopictus is an arbovirus vector that has spread from its native habitation areal in Southeast Asia throughout North and South Americas, Europe, and Africa. Ae. albopictus was first detected in the Southern Federal District of the Russian Federation in the subtropical town of Sochi in 2011. In subsequent years, this species has been described in the continental areas with more severe climate and lower winter temperatures.
Methods
Genomic analysis of pooled Ae. albopictus samples collected in the mosquito populations in the coastal and continental regions of the Krasnodar Krai was conducted to look for the genetic changes associated with the spread and potential cold adaptation in Ae. albopictus.
Results
The results of the phylogenetic analysis based on mitochondrial genomes corresponded well with the hypothesis that Ae. albopictus haplotype A1a2a1 was introduced into the region from a single source. Population analysis revealed the role of dispersal and genetic drift in the local adaptation of the Asian tiger mosquito. The absence of shared haplotypes between the samples and high fixation indices suggest that gene flow between samples was heavily restricted. Mitochondrial and genomic differentiation together with different distances between dispersal routes, natural and anthropogenic barriers and local effective population size reduction could lead to difficulties in local climatic adaptations due to reduced selection effectiveness. We have found genomic regions with selective sweep patterns which can be considered as having been affected by recent selection events. The genes located in these regions participate in neural protection, lipid conservation, and cuticle formation during diapause. These processes were shown to be important for cold adaptation in the previous transcriptomic and proteomic studies. However, the population history and relatively low coverage obtained in the present article could have negatively affect sweep detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.