Plastisols based on polyvinyl chloride (PVC) can be processed by different techniques; their processability markedly depends on their flow properties and gelation/fusion processes. Classically, PVC has been the only polymer present in plastisol formulations. The present work explored the possibility of adding polyhydroxyalkanoates (PHAs), a type of biopolymer that, according to previous work, exhibits a good miscibility with PVC processed by other techniques (internal mixer and compression molding). The influence of PHA particles on flow properties, gelation‐fusion processes, tensile strength, hardness, and processability by rotomolding was evaluated. Although the biopolymer markedly increased the viscosity of PVC plastisols and caused a decrease in tensile strength in processed specimens, formulations including 20% by weight of biopolymer presented a good thickness distribution in rotomolded items, an elongation at break of around 300%, and an ultimate tensile strength of around 6–7 MPa. J. VINYL ADDIT. TECHNOL.,, 2012. © 2012 Society of Plastics Engineers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.