Abstract. We find for each simple finitary Lie algebra g a category Tg of integrable modules in which the tensor product of copies of the natural and conatural modules are injective. The objects in Tg can be defined as the finite length absolute weight modules, where by absolute weight module we mean a module which is a weight module for every splitting Cartan subalgebra of g. The category Tg is Koszul in the sense that it is antiequivalent to the category of locally unitary finite-dimensional modules over a certain direct limit of finite-dimensional Koszul algebras. We describe these finite-dimensional algebras explicitly. We also prove an equivalence of the categories T o(∞) and T sp(∞) corresponding respectively to the orthogonal and symplectic finitary Lie algebras o(∞), sp(∞).
A theory of highest weight modules over an arbitrary finite-dimensional Lie superalgebra is constructed. A necessary and sufficient condition for the finite-dimensionality of such modules is proved. Generic finite-dimensional irreducible representations are defined and an explicit character formula for such representations is written down. It is conjectured that this formula applies to any generic finite-dimensional irreducible module over any finite-dimensional Lie superalgebra. The conjecture is proved for several classes of Lie superalgebras, in particular for all solvable ones, for all simple ones, and for certain semi-simple ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.