The new design of a resilient element for application in drilling devices of vibration protection is presented. A cylindrical shell with a cut along its generatrix is the peculiarity of the proposed design. The presented resilient element has high loaded and damping properties upon cross dimension hard restriction condition. Besides, the design is simple, technological and low cost. The drilling shock absorber is tested, which is manufactured on the base of several slotted shell resilient elements, operating in parallel manner. A calculation method for slotted shell resilient elements for drilling devices vibration protection is given. This work presents results of slotted cylindrical shell study in conditions of contact interaction with a resilient filler. To provide the research, the authors have developed a verified numerical model of the shell resilient element with a slit and used iterative algorithms for contact problem solving, considering contact surface friction. The stress-strain state of the shell resilient element of the drilling shock absorber was analyzed. Strength of the structure is evaluated by the energy criterion. Hysteresis loops were developed and analyzed for some histories of resilient element cyclic loading. The obtained results make possible rather accurately to take into account effect of the shell and the filler material resilient characteristics, their geometrical parameters and tribological properties on operational characteristics of drilling devices for vibration protection. In its turn, this makes possible to use efficient drilling vibration protection devices, develop vibroinsulator shell designs by the criteria of maximum compliance and required damping level.
Sucker-rod pump plant operation is accompanied by inertial and shock loads, affecting the fatigue strength of sucker rods and causing possible accidents. This work proposes the original design of a shock absorber of a sucker-rod string. The peculiarity of the proposed design is the usage of thin plate packages as a bearing elastic element of the shock absorber. This approach to the elastic element’ design provides the shock absorber to be easy to manufacture and operate. Sucker-rod string protection from extra load will increase the sucker-rod pump plant efficiency in general. This study aims at developing shock absorber’s design and studying its most important performance options—strength and rigidity. A mechanical and mathematical model of a shock absorber’s elastic element was developed in order to specify its deformation. A package of thin plates was modelled as an equivalent solid plate with a cylindrical rigidity providing equal properties of the solid model and the plate package. This model makes possible to describe analytically the stress-strain state of the shock absorber bearing elements. The work presents the final expressions of the shock absorber’s strength and rigidity assessing in a convenient form for engineering practice. The numerical approbation of the obtained analytical results was carried out as the case of a plate elastic element. The authors give recommendation on the bearing unit’s design of the shock absorber.
In foundry production, the duration of metal crystallization of the cast part, as well as the distribution of the thermal field, are described by systems of analytical equations. There are a number of methods for modeling these processes, but their theoretical basis was formed at the end of the twentieth century, and it needs to be updated and clarified. Therefore, the aim of our work is to develop a new analytical method for researching the distribution of thermal fields in cast parts during crystallization. For the first time, on the basis of own analytical and thermophysical developments, it developed the analytical method for researching the thermal field of the casting during crystallization and cooling, which is based on establishing the kinetics of cooling of the casting surface in the foundry mold, the advancement of the crystallization front from the surface to the center of the casting, and the distribution of temperatures in the solid and liquid parts of the casting. The method is expressed in a number of analytical formulas, each of which describes the specific thermal process that occurs in the casting. The developed analytical method was used to research the crystallization of the casting in a one-time sand mold, using the example of researching the thermal field of the cast part made of carbon steel with 0.25% C, hollow cylindrical shape, with the wall thickness of 100 mm. The developed analytical method for researching the thermal fields of cast parts is the analytical basis for the refinement of applied computer programs for modeling crystallization and cooling processes in foundry production.
The formation of phosphate binders in systems based on orthophosphoric acid and the most common refractory fillers in foundry technology (quartz dust, zircon ZrSiO4, and kyanite-sillimanite Al2SiO5) has not been previously studied. The phase composition of these inorganic binders was studied, and the formation of silicon SiP2O7 and zirconium ZrP2O7 pyrophosphates was confirmed. The study by differential thermogravimetric analysis in the temperature range of 20–1000°С established the fact that the formed binders are thermally stable and do not emit harmful gaseous substances. The obtained results of the studied binders make it possible to develop new environment-friendly core mixtures of thermal hardening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.