BACKGROUND: Common irrigation water disinfection methods, which may be unable to inactivate all types of pathogens or even become phytotoxic themselves, are not very effective in controlling phytopathogens. Water disinfection by photocatalysis is a promising irrigation-water treatment for destroying phytopathogens without the drawbacks of conventional disinfection methods. Previous research has shown that solar photocatalytic technology can be used in the disinfection treatment of bacteria, protozoa and fungi, either through solar disinfection only. The purpose of this work was evaluate the TiO 2 photocatalysis process to inactivate Fusarium spores in distilled and well water.
Brosimum alicastrum is a native tree widely distributed in the Yucatan peninsula where is called Ramon. Some studies have reported that Ramon seeds contain high starch content, recently used in developing novel and sustainable biomaterials. This work aimed to evaluate the effect of the extractive solution on the starch isolation Ramon seed flour; for that, distilled water (S1) and NaOH solution (S2) were used. The Ramon starch yield was 28.0 ± 1.4% and 31.9 ± 1.7% for S1 and S2. The morphology of starches was observed with scanning electronic microscopy, the functional groups were determined through Fourier-transform Infrared Spectroscopy and crystallinity was calculated by X-ray diffraction analysis. The results indicate that both types of starch presented spherical morphology, similar functional groups and crystallinity values, suggesting that both extraction methods are suitable. The starches isolated exhibited similar thermal behavior assessed by differential scanning calorimetry and thermogravimetric analysis.
Agro-industrial waste valorization is an attractive approach that offers new alternatives to deal with shrinkage and residue problems. One of these approaches is the synthesis of advanced carbon materials. Current research has shown that citrus waste, mainly orange peel, can be a precursor for the synthesis of high-quality carbon materials for chemical adsorption and energy storage applications. A recent approach to the utilization of advanced carbon materials based on lignocellulosic biomass is their use in solar absorber coatings for solar-thermal applications. This study focused on the production of biochar from Citrus aurantium orange peel by a pyrolysis process at different temperatures. Biochars were characterized by SEM, elemental analysis, TGA-DSC, FTIR, DRX, Raman, and XPS spectroscopies. Optical properties such as diffuse reflectance in the UV−VIS−NIR region was also determined. Physical-chemical characterization revealed that the pyrolysis temperature had a negative effect in yield of biochars, whereas biochars with a higher carbon content, aromaticity, thermal stability, and structural order were produced as the temperature increased. Diffuse reflectance measurements revealed that it is possible to reduce the reflectance of the material by controlling its pyrolysis temperature, producing a material with physicochemical and optical properties that could be attractive for use as a pigment in solar absorber coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.