We consider a class of optimal control problems with a state constraint and investigate a trajectory with a single boundary interval (subarc). Following R.V. Gamkrelidze, we differentiate the state constraint along the boundary subarc, thus reducing the original problem to a problem with mixed control-state constraints, and show that this way allows one to obtain the full system of stationarity conditions in the form of A.Ya. Dubovitskii and A.A. Milyutin, including the sign definiteness of the measure (state constraint multiplier), i.e. the non-negativity of its density and atoms at junction points. The stationarity conditions are obtained by a two-stage variation approach, proposed in this paper. At the first stage, we consider only those variations, which do not affect the boundary interval, and obtain optimality conditions in the form of Gamkrelidze. At the second stage, the variations are concentrated on the boundary interval, thus making possible to specify the stationarity conditions and obtain the sign of density and atoms of the measure.
We consider a problem of maximization of the distance traveled by a material point in the presence of a nonlinear friction under a bounded thrust and fuel expenditure. Using the maximum principle we obtain the form of optimal control and establish conditions under which it contains a singular subarc. This problem seems to be the simplest one having a mechanical sense in which singular subarcs appear in a nontrivial way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.