Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF 6 at 50°C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO 2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50°C. It was found that the formation of HF starts after 70 hours of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF 6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide is proposed to describe the kinetics of HF formation.
The interaction of Li(+) with single and few layer graphene is reported. In situ Raman spectra were collected during the electrochemical lithiation of the single- and few-layer graphene. While the interaction of lithium with few layer graphene seems to resemble that of graphite, single layer graphene behaves very differently. The amount of lithium absorbed on single layer graphene seems to be greatly reduced due to repulsion forces between Li(+) at both sides of the graphene layer.
To use water as the source of electrons for proton or CO reduction within electrocatalytic devices, catalysts are required for facilitating the proton-coupled multi-electron oxygen evolution reaction (OER, 2 H O→O +4 H +4 e ). These catalysts, ideally based on cheap and earth abundant metals, have to display high activity at low overpotential and good stability and selectivity. While numerous examples of Co, Mn, and Ni catalysts were recently reported for water oxidation, only few examples were reported using copper, despite promising efficiencies. A rationally designed nanostructured copper/copper oxide electrocatalyst for OER is presented. This material derives from conductive copper foam passivated by a copper oxide layer and further nanostructured by electrodeposition of CuO nanoparticles. The generated electrodes are highly efficient for catalyzing selective water oxidation to dioxygen with an overpotential of 290 mV at 10 mA cm in 1 m NaOH solution.
The objective of this effort was to correlate the local surface ionic conductance of a Nafion ® 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and currentsensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion ® membrane was examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.