As shown by analysis of mice and humans bearing DOCK8-inactivating mutations, DOCK8 plays a cell-autonomous role in survival of naive CD8 T cells, LFA-1 polarization toward the immune synapse, and CD8 T cell memory and recall responses following viral infection.
Increasing evidence has challenged the traditional view about the immune privilege of the brain, but the precise roles of immune cells in regulating brain physiology and function remain poorly understood. Here, we report that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the choroid plexus of aged brains. ILC2 in the aged brain are long-lived, are relatively resistant to cellular senescence and exhaustion, and are capable of switching between cell cycle dormancy and proliferation. They are functionally quiescent at homeostasis but can be activated by IL-33 to produce large amounts of type 2 cytokines and other effector molecules in vitro and in vivo. Intracerebroventricular transfer of activated ILC2 revitalized the aged brain and enhanced the cognitive function of aged mice. Administration of IL-5, a major ILC2 product, was sufficient to repress aging-associated neuroinflammation and alleviate aging-associated cognitive decline. Targeting ILC2 in the aged brain may provide new avenues to combat aging-associated neurodegenerative disorders.
Despite mounting evidence suggesting the involvement of the immune system in regulating brain function, the specific role of immune and inflammatory cells in neurodegenerative diseases remain poorly understood. In this study, we report that depletion of NK cells, a type of innate lymphocytes, alleviates neuroinflammation, stimulates neurogenesis, and improves cognitive function in a triple-transgenic Alzheimer disease (AD) mouse model. NK cells in the brains of triple-transgenic AD mouse model (3xTg-AD) mice exhibited an enhanced proinflammatory profile. Depletion of NK cells by anti-NK1.1 Abs drastically improved cognitive function of 3xTg-AD mice. NK cell depletion did not affect amyloid b concentrations but enhanced neurogenesis and reduced neuroinflammation. Notably, in 3xTg-AD mice depleted of NK cells, microglia demonstrated a homeostatic-like morphology, decreased proliferative response and reduced expression of neurodestructive proinflammatory cytokines. Together, our results suggest a proinflammatory role for NK cells in 3xTg-AD mice and indicate that targeting NK cells might unlock novel strategies to combat AD.
The effects of aging on innate immunity and the resulting impacts on immunosenescence remain poorly understood. Here, we report that aging induces compartmentalized changes to the development and function of group 2 innate lymphoid cells (ILC2), an ILC subset implicated in pulmonary homeostasis and tissue repair. Aging enhances bone marrow early ILC2 development through Notch signaling, but the newly generated circulating ILC2 are unable to settle in the lungs to replenish the concomitantly declining mature lung ILC2 pool in aged mice. Aged lung ILC2 are transcriptomically heterogeneous and functionally compromised, failing to produce cytokines at homeostasis and during influenza infection. They have reduced expression of Cyp2e1, a cytochrome P450 oxidase required for optimal ILC2 function. Transfer of lung ILC2 from young mice enhances resistance to influenza infection in old mice. These data highlight compartmentalized effects of aging on ILC and indicate that targeting tissue‐resident ILCs might unlock therapies to enhance resistance to infections and diseases in the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.