Rationale: Dopants in ionic conductors play a crucial role in achieving the required electrochemical properties. A slight variation in their concentration considerably affects the conductivity of crystals and their applicability as ionic conductors and laser materials. To ensure the growth of high-quality fluoride crystals, adequate approaches for the quantification of matrix and admixture/dopant components are required. Methods: A panel of SrF 2 -and GdF 3 -doped LaF 3 single crystals was investigated.The electrical conductivity of the crystals was measured using impedance spectroscopy in the frequency range 100 Hz-1 MHz to control for crystal quality.Pulsed glow discharge mass spectrometry (GDMS) was used to simultaneously quantify fluorine, strontium, lanthanum, and gadolinium in the crystals. X-ray fluorescence, scanning electron microscopy-energy dispersive X-ray spectroscopy, and arc optical emission spectrometry were used for validation.Results: Quasiperiodic intensity drifts under sputtering of the ionic conductors were observed and attributed to F − redistribution on the sample surface, affecting surface conductivity and sputtering rate. Several sample preparation protocols were tested to address that effect. Full coating of the sample with a layer of silver several micrometers thick provided stable and effective sputtering. The parameters for the GDMS determination of F, Sr, La, and Gd were optimized. The elements' distribution was studied in different parts of the crystals. Conclusions:An analytical approach to the direct multi-element analysis of fluoridecontaining ionic conductors using pulsed GDMS with La 1−x−y Sr x Gd y F 3−x as an example was designed and tested. Instability effects of ionic conductivity were explained and coped with, providing effective and stable sputtering.
Direct analysis of matrix and admixture elements in non-conducting crystals is a relevant analytical task in terms of quality assurance of optical materials. The current study aimed to develop a method capable to assess the inhomogeneity of optical crystals with sufficient sensitivity. K1−xRbxTiOPO4 (x = 0.002 and 0.05) and KGd1−yNdy(WO4)2 (y = 0.05) were grown using the top-seeded solution growth method (TSSG). The samples were analyzed by microsecond direct current pulsed glow discharge time-of-flight mass spectrometry (µs-PDC TOF GDMS). The data were compared with the results obtained by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM EDX) and spectrophotometry and validated by the analysis of certified reference material. Sample glow discharge sputtering and analysis were optimized and implemented in real samples. Sample coating with a silver layer and sample pressing in the metallic matrix were proposed to ensure effective sputtering for K1−xRbxTiOPO4 and KGd1−yNdy(WO4)2, respectively. Using the designed method, the inhomogeneity of the dopant’s distribution was demonstrated along the growth axis and in the case of K1−xRbxTiOPO4, also in the growth sectors of different faces. The designed method is applicable for the direct analysis of optical crystal and may be implemented in quality assurance in the manufacturing of optical materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.