Parahydrogen-induced polarization of nuclear spins provides enhancements of NMR signals for various nuclei of up to four to five orders of magnitude in magnetic fields of modern NMR spectrometers and even higher enhancements in low and ultra-low magnetic fields. It is based on the use of parahydrogen in catalytic hydrogenation reactions which, upon pairwise addition of the two H atoms of parahydrogen, can strongly enhance the NMR signals of reaction intermediates and products in solution. A recent advance in this field is the demonstration that PHIP can be observed not only in homogeneous hydrogenations but also in heterogeneous catalytic reactions. The use of heterogeneous catalysts for generating PHIP provides a number of significant advantages over the homogeneous processes, including the possibility to produce hyperpolarized gases, better control over the hydrogenation process, and the ease of separation of hyperpolarized fluids from the catalyst. The latter advantage is of paramount importance in light of the recent tendency toward utilization of hyperpolarized substances in in vivo spectroscopic and imaging applications of NMR. In addition, PHIP demonstrates the potential to become a useful tool for studying mechanisms of heterogeneous catalytic processes and for in situ studies of operating catalytic reactors. Here, the known examples of PHIP observations in heterogeneous reactions over immobilized transition metal complexes, supported metals, and some other types of heterogeneous catalysts are discussed and the applications of the technique for hypersensitive NMR imaging studies are presented.
Substantial (31)P NMR signal enhancement of more than two orders of magnitude at 7 T for free and bound PPh3 species was observed under reversible interaction of (PPh3)3Ir(H2)Cl with parahydrogen. The large improvement in sensitivity made single-shot (31)P NMR imaging of a model object possible. The observed effects are temperature and magnetic field dependent as shown experimentally and theoretically.
Signal Amplification By Reversible Exchange (SABRE) is a new and rapidly developing hyperpolarization technique. The recent discovery of Spin-Lock Induced Crossing SABRE (SLIC-SABRE) shows that high field hyperpolarization transfer techniques developed so far were optimized for singlet spin order that does not coincide with the experimentally produced spin state. Here, we investigate the SLIC-SABRE approach and the most advanced quantitative theoretical SABRE model. It is the goal to achieve the highest possible polarization with SLIC-SABRE at high field using the standard SABRE system, IrIMes catalyst with pyridine. We demonstrate the accuracy of SABRE model describing the effects of various physical parameters such as the amplitude and frequency of the radio-frequency field, and the effects of chemical parameters such as the exchange rate constants. The combined use of experiments and theory allows to determine the effective lifetime of SABRE-complex. Furthermore, the entropy and enthalpy of the SABRE-complex dissociation reaction based on the temperature dependence of SLIC-SABRE signal can be accessed. We show, for the first time, that this SLIC-SABRE model can be useful for the evaluation of the chemical exchange parameters that are very important for the production of highly polarized contrast agents via SABRE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.