The study of a new dye-matrix system-quickly frozen ortho-dichlorobenzene weakly doped with terrylene--via single-molecule (SM) spectroscopy is presented. The spectral and photo-physical properties, dynamics, and temperature broadening of SM spectra at low temperatures are discussed. The data reveal a broad inhomogeneous distribution, which indicates a high degree of matrix inhomogeneities, but at the same time, huge fluorescence emission rates and extraordinary SM spectral and photochemical stability with almost complete absence of blinking and bleaching. These unusual properties render the new system a promising candidate for applications in photonics, for example, for delivering single photons on demand.
Antibunching effect is typically observed in individual systems possessing photoluminescence (PL) blinking and vice versa. Contrary to this common perception, absence of antibunching in strongly blinking methyl ammonium led tri‐iodide (MAPbI3) perovskite crystals of sizes from tens to hundreds of nanometers regardless of the excitation power density is observed. Antibunching effect does not appear even when photon statistics are analyzed for bright and intermediate PL intensity levels independently. This shows that there is no directional energy funneling and accumulation of charge carriers in the small local regions in MAPbI3 crystals where an Auger recombination can potentially suppress the simultaneous emission of two photons. This result allows for the exclusion of the PL blinking mechanism based on the idea of emitting sites previously hypothesized for perovskites. Therefore, the model of PL blinking in perovskite crystals based on the presence of a metastable non‐radiative recombination center (the supertrap) is the only one proposed so far which explains blinking without conflicting with the absence of photon correlations.
Numerous experiments have shown that the low-temperature dynamics of a wide variety of disordered solids is qualitatively universal. However, most of these results were obtained with ensemble-averaging techniques which hide the local parameters of the dynamic processes. We used single-molecule (SM) spectroscopy for direct observation of the dynamic processes in disordered solids with different internal structure and chemical composition. The surprising result is that the dynamics of low-molecular-weight glasses and short-chain polymers does not follow, on a microscopic level, the current concept of low-temperature glass dynamics. An extra contribution to the dynamics was detected causing irreproducible jumps and drifts of the SM spectra on timescales between milliseconds and minutes. In most matrices consisting of small molecules and oligomers, the spectral dynamics was so fast that SM spectra could hardly or not at all be recorded and only irregular fluorescence flares were observed. These results provide new mechanistic insight into the behavior of glasses in general: At low temperatures, the local dynamics of disordered solids is not universal but depends on the structure and chemical composition of the material.
The temporal evolution of fluorescence intensity of a single blinking CdSe/ZnS nanocrystal (quantum dot, QD) has been measured with continuous wave (CW) laser excitation at room temperature. Tracks exhibit ON-/OFFfluctuations with large amplitude and intensity fluctuations with small amplitude in the ON-interval. The QD photon distribution function was obtained by statistical analysis of this fluorescence track. The experimental QD photon distribution function was compared with an analogous function calculated with the Monte Carlo technique on the basis of two mechanisms for intermittency which take into account both ionization/neutralization processes in the QD core, as well as diffusive fluctuations of atoms on the core−shell interface. We show that a combined model based on these two mechanisms sufficiently describes the shape of the measured photon distribution function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.